The modulus of elasticity is 28.6 X 10³ ksi
<u>Explanation:</u>
Given -
Length, l = 5in
Force, P = 8000lb
Area, A = 0.7in²
δ = 0.002in
Modulus of elasticity, E = ?
We know,
Modulus of elasticity, E = σ / ε
Where,
σ is normal stress
ε is normal strain
Normal stress can be calculated as:
σ = P/A
Where,
P is the force applied
A is the area of cross-section
By plugging in the values, we get
σ = 
σ = 11.43ksi
To calculate the normal strain we use the formula,
ε = δ / L
By plugging in the values we get,
ε = 
ε = 0.0004 in/in
Therefore, modulus of elasticity would be:

Thus, modulus of elasticity is 28.6 X 10³ ksi
Orthographic projection, common method of representing three-dimensional objects, usually by three two-dimensional drawings in each of which the object is viewed along parallel lines that are perpendicular to the plane of the drawling.
Answer:
13.4 mm
Explanation:
Given data :
Load amplitude ( F ) = 22,000 N
factor of safety ( N )= 2.0
Take ( Fatigue limit stress amplitude for this alloy ) б = 310 MPa
<u>calculate the minimum allowable bar diameter to ensure that fatigue failure will not occur</u>
minimum allowable bar diameter = 13.4 * 10^-3 m ≈ 13.4 mm
<em>attached below is a detailed solution</em>
Efficiency is the minimum use of energy to accomplish the task. The wasted energy will be 375 J when 750 J of energy is given.
<h3>What is wasted energy?</h3>
Wasted energy is energy that is not useful when the transformation in the system occurs.
Total energy = 750 J
The efficiency of the system = 50 %
Output work (OW) is calculated as:
Efficiency = output work ÷ input work × 100%
750 × 50 = 100 OW
OW = 375 J
Wasted energy = Total energy - output work
= 750 - 375
= 375 J
Therefore, the machine is 50 % inefficient and has wasted energy of 375 J.
Learn more about wasted energy here:
brainly.com/question/16177264
#SPJ4