1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zlopas [31]
2 years ago
8

Water is boiled in a pot covered with a loosely fitting lid at a location where the pressure is 85.4 kPa. A 2.61 kW resistance h

eater with 84.5% efficiency supplies heat to the pot. How many minutes will it take to boil 6.03 kg of water?
Engineering
1 answer:
eimsori [14]2 years ago
4 0

Answer:

t = 6179.1 s = 102.9 min = 1.7 h

Explanation:

The energy provided by the resistance heater must be equal to the energy required to boil the water:

E = ΔQ

ηPt = mH

where.

η = efficiency = 84.5 % = 0.845

P = Power = 2.61 KW = 2610 W

t = time = ?

m = mass of water = 6.03 kg

H = Latent heat of vaporization of water = 2.26 x 10⁶ J/kg

Therefore,

(0.845)(2610 W)t = (6.03 kg)(2.26 x 10⁶ J/kg)

t = \frac{1.362\ x\ 10^7\ J}{2205.45\ W}

<u>t = 6179.1 s = 102.9 min = 1.7 h</u>

You might be interested in
Saturated steam coming off the turbine of a steam power plant at 40°C condenses on the outside of a 3-cm-outer-diameter, 35-m-lo
Marina86 [1]

Answer:

93.57 KJ/s

Explanation:

Rate of heat transfer from the steam to the cooling water = mass rate  ×  Heat of vaporization of water at 40 °C

H vaporization of water 40 °C  at saturation pressure = 2406.0 kJ / Kg

rate of heat transfer = 2406.0 kJ / Kg × 140 Kg / ( 60 × 60s) = 93.57 KJ/s

5 0
3 years ago
How can you do this 5.2.4: Rating?
gizmo_the_mogwai [7]

Answer:

whats the question

Explanation:

5 0
3 years ago
One kilogram of air, initially at 5 bar, 350 K, and 3 kg of carbon dioxide (CO2), initially at 2 bar, 450 K, are confined to opp
pentagon [3]

Answer:

Check the explanation

Explanation:

Energy alance of 2 closed systems: Heat from CO2 equals the heat that is added to air in

m_{a} c_{v,a}(T_{eq} -T_{a,i)} =m_{co2} c_{v,co2} (T_{co2,i} -T_{eq)}

1x0.723x(T_{eq} -350)=3x0.780x(450-T_{eq} ) ⇒T_{eq} = 426.4 °K

The initail volumes of the gases can be determined by the ideal gas equation of state,

V_{a,i}  = \frac{mRT_{a,i} }{P_{a,i} }=  \frac{1x (8.314 28.97 kJ kg • °K)x 350°K}{5 bar x 100KPa bar} = 0.201m^{3}

The equilibrium pressure of the gases can also be obtained by the ideal gas equation

P_{eq=\frac{(m_{a}R_{a}T_{eq})+(m_{a}R_{a}T_{eq} ) }{(V_{a,eq}+V_{CO2,eq)} } =\frac{(m_{a}R_{a}T_{eq})+(m_{a}R_{a}T_{eq} ) }{(V_{a,i}+V_{CO2,i)} }

P_{eq}= 1x(8.314 28.97)x426.4+3x(8.314 44)x426.4

                             (0.201+1.275)

= 246.67 KPa = 2.47 bar

6 0
3 years ago
Convert the unit Decimeter (dm) into Micrometer (um).
oksian1 [2.3K]

Answer:

86701 Micrometers.

Explanation:

Multiply 0.86701 dm by 100,000 to get 86701 um.

7 0
3 years ago
A 35kg block of mass is subjected to forces F1=100N and F2=75N at agive angle thetha= 20° and 35° respectively.find the distance
Talja [164]

Answer:

21 m

Explanation:

Since F₁ = 100 N and acts at an angle of 20° to the horizontal, it has horizontal component F₁' = 100cos20° = 93.97 N and vertical component F₁" = 100sin20° = 34.2 N.

Also, F₂ = 75 N and acts at an angle of -35° to the horizontal, it has horizontal component F₂' = 75cos(-35°) = 75cos35° = 61.44 N and vertical component F₂" = 75sin(-35°) = -75sin35° = -43.02 N

The resultant horizontal force F₃' = F₁' + F₂' = 93.97 N + 61.44 N = 155.41 N

The resultant vertical force F₃" = F₁" + F₂" = 34.2 N - 43.02 N = -8.82 N

If f is the frictional force on the block, the net horizontal force on the block is F = F₃' - f.

Since f = μN where μ = coefficient of kinetic friction = 0.4 and N = normal force on the block.

For the block to be in contact with the surface, the vertical forces on the block must balance.

Since the normal force, N must equal the resultant vertical force F₃" and the weight, W = mg of the object for a zero net vertical force,

N = mg + F₃" (since both the weight and the resultant vertical force act downwards)

N = mg + F₃"

Since m = mass of block = 35 kg and g = acceleration due to gravity = 9.8 m/s² and F₃" = 8.82 N

So,

N = mg + F₃"

N = 35 kg × 9.8 m/s² + 8.82 N

N = 343 N + 8.82 N

N = 351.82 N

So, the net horizontal force F = F₃' - f.

F = 155.41 N - 0.4 × 351.82 N

F = 155.41 N - 140.728 N

F = 14.682 N

Since F = ma, where a = acceleration of block,

a = F/m = 14.682 N/35 kg = 0.42 m/s²

To find the distance the block moved, x we use the equation

x = ut + 1/2at² where u = initial speed of block = 0 m/s, t = time = 10 s and a = acceleration of block = 0.42 m/s²

Substituting the values of the variables into the equation, we have

x = ut + 1/2at²

x = 0 m/s × 10 s + 1/2 × 0.42 m/s² × (10 s)²

x = 0 m + 1/2 × 0.42 m/s² × 100 s²

x = 0.21 m/s² × 100 s²

x = 21 m

So, the distance moved by the block is 21 m.

4 0
3 years ago
Other questions:
  • Technician A says that most states will allow landfills to dispose of whole tires with a permit. Technician B says that landfill
    5·1 answer
  • Compute the estimated actual endurance limit for SAE 4130 WQT 1300 steel bar with a rectangular cross section of 20.0 mm by 60 m
    11·1 answer
  • A Coca Cola can with diameter 62 mm and wall thickness 300 um has an internal pressure of 100 kPa. Calculate the principal stres
    9·1 answer
  • A heat pump and a refrigerator are operating between the same two thermal reservoirs. Which one has a higher COP?
    10·1 answer
  • • Differentiate between laboratory and industrial reactors​
    11·1 answer
  • Which word from the passage best explains what the web in the passage symbolizes
    10·1 answer
  • For many clients, a decision is based primarily on time and money, which are the two most abundant
    10·2 answers
  • Propose any improvements if there are any in brake system
    7·1 answer
  • What is the role of engineers in nation building <br><br>​
    13·2 answers
  • Read the passage.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!