When a system is in dynamic equilibrium, the forward reaction rate and the backward reaction rate are equal or occurs at the same rate. Therefore, the third option above is the most accurate one. Hope this answers the question. Have a nice day.
52
Explanation:
We need to understand and apply the rules of significant figures when carrying out addition operations to solve this problem:
Rules of significant figures:
- Non-zero digits are always significant in a given number
- Any zeros between two significant digits are significant.
- A final zero or trailing zeros in the decimal portion is significant.
- Any leading zero in a decimal is significant.
In addition, the answer of the sum is given to the least number of significant digits of the given numbers:
44.2124
+ 0.81
+ 7.335
sum 52.3574
Now the least number of significant figure is 2 as seen in 0.81
we round the sum up to 52
learn more:
Significant numbers brainly.com/question/6384538
#learnwithBrainly
Unwashed ==> Most bacteria
Sanitizer == Will have less than Unwashed
Washed ==> least amount of bacteria
Explanation:
The given data is as follows.
= 100 mm Hg or
= 0.13157 atm
=
= (1080 + 273) K = 1357 K
=
= (1220 + 273) K = 1493 K
= 600 mm Hg or
= 0.7895 atm
R = 8.314 J/K mol
According to Clasius-Clapeyron equation,

![log(\frac{0.7895}{0.13157}) = \frac{\Delta H_{vap}}{2.303 \times 8.314 J/mol K}[\frac{1}{1357 K} - \frac{1}{1493 K}]](https://tex.z-dn.net/?f=log%28%5Cfrac%7B0.7895%7D%7B0.13157%7D%29%20%3D%20%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B2.303%20%5Ctimes%208.314%20J%2Fmol%20K%7D%5B%5Cfrac%7B1%7D%7B1357%20K%7D%20-%20%5Cfrac%7B1%7D%7B1493%20K%7D%5D)
![log (6) = \frac{\Delta H_{vap}}{19.147}[\frac{(1493 - 1357) K}{1493 K \times 1357 K}]](https://tex.z-dn.net/?f=log%20%286%29%20%3D%20%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B19.147%7D%5B%5Cfrac%7B%281493%20-%201357%29%20K%7D%7B1493%20K%20%5Ctimes%201357%20K%7D%5D)
0.77815 = 
=
J/mol
= 
= 221.9 kJ/mol
Thus, we can conclude that molar heat of vaporization of substance X is 221.9 kJ/mol.