Answer:

Explanation:
Given that
At X=0 V=Vo
At X=X1 V=0
As we know that friction force is always try to oppose the motion of an object. It means that it provide acceleration in the negative direction.
We know that



So the friction force on the box
Ff= m x a

Where m is the mass of the box.
To solve this problem we will apply the concepts related to the calculation of the speed of sound, the calculation of the Mach number and finally the calculation of the temperature at the front stagnation point. We will calculate the speed in international units as well as the temperature. With these values we will calculate the speed of the sound and the number of Mach. Finally we will calculate the temperature at the front stagnation point.
The altitude is,

And the velocity can be written as,


From the properties of standard atmosphere at altitude z = 20km temperature is



Velocity of sound at this altitude is



Then the Mach number



So front stagnation temperature



Therefore the temperature at its front stagnation point is 689.87K
Answer:
4.14°
Explanation:
given:
r = 1.2 km
v = 105 km/h
1) <em>convert your given </em>
a) r = 1.2 km to m = 1200m
b) v = 105 km/h to m/s = 29.2 m/s
2) <em>plug into your ideal banking angle equation</em>
(
) =
= 4.14°
Answer:
<em>The rubber band will be stretched 0.02 m.</em>
<em>The work done in stretching is 0.11 J.</em>
Explanation:
Force 1 = 44 N
extension of rubber band = 0.080 m
Force 2 = 11 N
extension = ?
According to Hooke's Law, force applied is proportional to the extension provided elastic limit is not extended.
F = ke
where k = constant of elasticity
e = extension of the material
F = force applied.
For the first case,
44 = 0.080K
K = 44/0.080 = 550 N/m
For the second situation involving the same rubber band
Force = 11 N
e = 550 N/m
11 = 550e
extension e = 11/550 = <em>0.02 m</em>
<em>The work done to stretch the rubber band this far is equal to the potential energy stored within the rubber due to the stretch</em>. This is in line with energy conservation.
potential energy stored = 
==>
= <em>0.11 J</em>
Answer:
![\vec{E} = \frac{\lambda}{2\pi\epsilon_0}[\frac{1}{y}(\^y) - \frac{1}{x}(\^x)]](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%7D%5B%5Cfrac%7B1%7D%7By%7D%28%5C%5Ey%29%20-%20%5Cfrac%7B1%7D%7Bx%7D%28%5C%5Ex%29%5D)
Explanation:
The electric field created by an infinitely long wire can be found by Gauss' Law.

For the electric field at point (x,y), the superposition of electric fields created by both lines should be calculated. The distance 'r' for the first wire is equal to 'y', and equal to 'x' for the second wire.
![\vec{E} = \vec{E}_1 + \vec{E}_2 = \frac{\lambda}{2\pi\epsilon_0 y}(\^y) + \frac{-\lambda}{2\pi\epsilon_0 x}(\^x)\\\vec{E} = \frac{\lambda}{2\pi\epsilon_0 y}(\^y) - \frac{\lambda}{2\pi\epsilon_0 x}(\^x)\\\vec{E} = \frac{\lambda}{2\pi\epsilon_0}[\frac{1}{y}(\^y) - \frac{1}{x}(\^x)]](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20%5Cvec%7BE%7D_1%20%2B%20%5Cvec%7BE%7D_2%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20y%7D%28%5C%5Ey%29%20%2B%20%5Cfrac%7B-%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20x%7D%28%5C%5Ex%29%5C%5C%5Cvec%7BE%7D%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20y%7D%28%5C%5Ey%29%20-%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20x%7D%28%5C%5Ex%29%5C%5C%5Cvec%7BE%7D%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%7D%5B%5Cfrac%7B1%7D%7By%7D%28%5C%5Ey%29%20-%20%5Cfrac%7B1%7D%7Bx%7D%28%5C%5Ex%29%5D)