Answer:
5.5 km
Explanation:
First, we convert the distance from km/h to m/s
910 * 1000/3600
= 252.78 m/s
Now, we use the formula v²/r = gtanθ to get our needed radius
making r the subject of the formula, we have
r = v²/gtanθ, where
r = radius of curvature needed
g = acceleration due to gravity
θ = angle of banking
r = 252.78² / (9.8 * tan 50)
r = 63897.73 / (9.8 * 1.19)
r = 63897.73 / 11.662
r = 5479 m or 5.5 km
Thus, we conclude that the minimum curvature radius needed for the turn is 5.5 km
I think its A I hope this help thank you!!
Explanation:
LD₁ = 10⁵ mm⁻²
LD₂ = 10⁴mm⁻²
V = 1000 mm³
Distance = (LD)(V)
Distance₁ = (10⁵mm⁻²)(1000mm³) = 10×10⁷mm = 10×10⁴m
Distance₂ = (10⁹mm⁻²)(1000mm³) = 1×10¹² mm = 1×10⁹ m
Conversion to miles:
Distance₁ = 10×10⁴ m / 1609m = 62 miles
Distance₂ = 10×10⁹m / 1609 m = 621,504 miles.
Answer:
12m/s
Explanation:
Given parameters:
Power = 6.5 x 10⁴W
Force = 5.5 x 10³N
Unknown:
The resulting velocity = ?
Solution:
The velocity of a body is related to force and power using the expression below;
Power = Force x velocity
Insert the parameters and solve for velocity
6.5 x 10⁴ = 5.5 x 10³ x velocity
velocity =
= 12m/s
Answer:
8 colors in alphabetical order are
Black
blue
brown
Green
Orange
Pink
Purple
Yellow
Explanation: