Uranium provides nuclear fuel used generate electricity in nuclear power station,also used by the military to power nuclear submarines and in nuclear weapons.
Answer:
The mass of potassium required to produce a known mass of potassium chloride
Explanation:
Stoichiometry deals with the relationship between amount of substances, mass of substances or volume of substances required in a chemical reaction. Stoichiometric relationships may involve reactants alone or reactants and products. These relationships are normally in the form of simple proportion.
A typical example is our answer option, the mass of potassium required could be used to determine the mass of potassium chloride produced after a balanced reaction equation is written.
Answer:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles. With an increase in temperature, the particles move faster as they gain kinetic energy, resulting in increased collision rates and an increased rate of diffusion.
Explanation:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles. With an increase in temperature, the particles move faster as they gain kinetic energy, resulting in increased collision rates and an increased rate of diffusion.
Answer:
Option B, aspirin’s ester group provides greater digestibility to aspirin
Explanation:
Aspirin ester group has three parts
- carboxylic acid functional group (R-COOH)
- ester functional group (R-O-CO-R')
- aromatic group (benzene ring)
Aspirin is a weak acid and hence it cannot dissolve in water readily. The reaction of Aspirin ester group with water is as follows -
aspirin
(acetylsalicylic acid) + water → salicylic acid + acetic acid
(ethanoic acid)
Aspirin passes through the stomach and remains unchanged until it reaches the intestine where it hydrolyses ester to form the active compound.