Answer:
The concentration of I at equilibrium = 3.3166×10⁻² M
Explanation:
For the equilibrium reaction,
I₂ (g) ⇄ 2I (g)
The expression for Kc for the reaction is:
![K_c=\frac {\left[I_{Equilibrium} \right]^2}{\left[I_2_{Equilibrium} \right]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%20%7B%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%7D%7B%5Cleft%5BI_2_%7BEquilibrium%7D%20%5Cright%5D%7D)
Given:
= 0.10 M
Kc = 0.011
Applying in the above formula to find the equilibrium concentration of I as:
![0.011=\frac {\left[I_{Equilibrium} \right]^2}{0.10}](https://tex.z-dn.net/?f=0.011%3D%5Cfrac%20%7B%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%7D%7B0.10%7D)
So,
![\left[I_{Equilibrium} \right]^2=0.011\times 0.10](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%3D0.011%5Ctimes%200.10)
![\left[I_{Equilibrium} \right]^2=0.0011](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%3D0.0011)
![\left[I_{Equilibrium} \right]=3.3166\times 10^{-2}\ M](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%3D3.3166%5Ctimes%2010%5E%7B-2%7D%5C%20M)
<u>Thus, The concentration of I at equilibrium = 3.3166×10⁻² M</u>
Answer:
0.595 M
Explanation:
The number of moles of water in 1L = 1000g/18g/mol = 55.6 moles of water.
Mole fraction = number of moles of KNO3/number of moles of KNO3 + number of moles of water
0.0194 = x/x + 55.6
0.0194(x + 55.6) = x
0.0194x + 1.08 = x
x - 0.0194x = 1.08
0.9806x= 1.08
x= 1.08/0.9806
x= 1.1 moles of KNO3
Mole fraction of water= 55.6/1.1 + 55.6 = 0.981
If
xA= mole fraction of solvent
xB= mole fraction of solute
nA= number of moles of solvent
nB = number of moles of solute
MA= molar mass of solvent
MB = molar mass of solute
d= density of solution
Molarity = xBd × 1000/xAMA ×xBMB
Molarity= 0.0194 × 1.0627 × 1000/0.981 × 18 × 0.0194×101
Molarity= 20.6/34.6
Molarity of KNO3= 0.595 M