Sally is struggling with Prospective memory.
<u>Explanation:</u>
The type of memory in which an individual has problem to remember a planned set of actions. He or she can remember or recall it only after some period of time may be in future and not at that time where those actions needs to be performed. These type of memory problem can range from a simple situation like the tasks that are to be done in common, simple and daily basis to serious issue.
Some of the instances of this kind of prospective memory includes, closing a tap after usage, cut a call over phone when the conversation is done,etc. These instances includes only simple issues. Some of dangerous issues includes forgetting to take regular medicines, forgetting to take some protective and safety measures while driving,etc.
When identifying an element the most important subatomic particle to look at is the proton because this is the number that the periodic table is organized by...
For example the element
Hydrogen has 1 proton and it is listed as number on the periodic table
<u>Answer:</u> The enthalpy of the reaction is coming out to be -902 kJ.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_f_{(product)}]-\sum [n\times \Delta H_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(4\times \Delta H_f_{(NO(g))})+(6\times \Delta H_f_{(H_2O(g))})]-[(4\times \Delta H_f_{(NH_3(g))})+(5\times \Delta H_f_{(O_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%284%5Ctimes%20%5CDelta%20H_f_%7B%28NO%28g%29%29%7D%29%2B%286%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%284%5Ctimes%20%5CDelta%20H_f_%7B%28NH_3%28g%29%29%7D%29%2B%285%5Ctimes%20%5CDelta%20H_f_%7B%28O_2%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(4\times (91.3))+(6\times (-241.8))]-[(4\times (-45.9))+(5\times (0))]\\\\\Delta H_{rxn}=-902kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%284%5Ctimes%20%2891.3%29%29%2B%286%5Ctimes%20%28-241.8%29%29%5D-%5B%284%5Ctimes%20%28-45.9%29%29%2B%285%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-902kJ)
Hence, the enthalpy of the reaction is coming out to be -902 kJ.
Answer:
SO2
Explanation:
Dipole-Dipole exist between parmanent dipoles in a molecule. THis means that molecule must have a parmanent dipole moment in it.
Example - HCl
Hydrogen bonding is an attraction between lone pair of an electronegative element and H atom of same or different molecule. H must be covalantly attached to either F, N or O.
Example - H2O
Among the molecules given in the list only SO2 and H2O exihibits parmanent moment. As BCl3 , CBr4 and H2 are symmetric compounds.
Since, SO2 cannot exihibit H- bonding only dipole-dipole forces as its strongest intermolecular force.