Answer: D) helium.
Explanation:
Nuclear fission is a process which involves the conversion of a heavier nuclei into two or more small and stable nuclei along with the release of energy.

Nuclear fusion is a process which involves the conversion of two small nuclei to form a heavy nuclei along with release of energy.
Example: 
Thus when deuterium and tritium , the two isotopes of hydrogen are fused, a heavier nuclei helium is being formed from two smaller nuclei releasing a neutron.
Answer:
![K_a=\frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BHCO_3%5E-%5D%7D%7B%5BH_2CO_3%5D%7D)
Explanation:
Several rules should be followed to write any equilibrium expression properly. In the context of this problem, we're dealing with an aqueous equilibrium:
- an equilibrium constant is, first of all, a fraction;
- in the numerator of the fraction, we have a product of the concentrations of our products (right-hand side of the equation);
- in the denominator of the fraction, we have a product of the concentrations of our reactants (left-hand side o the equation);
- each concentration should be raised to the power of the coefficient in the balanced chemical equation;
- only aqueous species and gases are included in the equilibrium constant, solids and liquids are omitted.
Following the guidelines, we will omit liquid water and we will include all the other species in the constant. Each coefficient in the balanced equation is '1', so no powers required. Multiply the concentrations of the two products and divide by the concentration of carbonic acid:
![K_a=\frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BHCO_3%5E-%5D%7D%7B%5BH_2CO_3%5D%7D)
Answer:
1.5 moles of Ca²⁺ and 3 moles of NO₃⁻
Explanation:
This is the dissociation:
Ca(NO₃)₂ → Ca²⁺ + 2NO₃⁻
1.5 moles of salt will have the same moles of ion Ca²⁺ and the double of moles, of nitrate according to the equation.
Therefore will be 1.5 moles of Ca²⁺ and 3 moles of NO₃⁻
The unbalanced equation is BF3 + Li2 SO3 --> B2 (SO3)3 + LiF, where the numbers to the right of the symbols are subscripts. The balanced equation is 2 BF3 + 3 Li2SO3 ---> B2 (SO3)3 + 6LiF. The numbers in front of every formula (compound) are the respective coefficients. You can check that the equation is balanced counting every element: There are 2B in the side of the reactants and 2B in the side of the products; there are 6F in the side of the reactants and 6F in the side of the products; there are 6 Li in the side of the reactants and 6 Li in the side of the products; and there are 3 SO3 in the side of the reactants and 3 SO3 in the side of the products. <span>So, the coefficient of the LiF is 6.</span>
Answer:
When light hits CRY2, it changes shape and binds to its natural partner protein, known as CIB1. When light shines on the cells, the CRY2 protein binds to CIB1, which is floating in the cell. CIB1 brings along a gene activator, which initiates transcription, or the copying of DNA into mRNA.
Explanation: