So first we find the gap between the slits by the formula d=1/N
<span>N is number of lines per metre so 3700 line/cm = 370000 lines/m </span>
<span>So d=2.7*10^-6 </span>
<span>Now we use the formula dsin(angle)=n(wavelength) </span>
<span>d is the same </span>
<span>n is the order of the diffraction pattern </span>
<span>so wavelenth=dsin(angle)/n </span>
<span>=[(2.7*10^-6)*sin30]/3 </span>
<span>=4.5*10^-7 m</span>
As we know that as per Newton's II law we have

here we will have
= change in momentum
= time interval in which momentum is changed
now in order to have least injury during jumping we need to have least force on the jumper
so in order to have least force we can say that the momentum must have to change in maximum time so that amount of force must be least
So we need to increase the time in which momentum of the system is changed
A. 14.59 is correctly rounded to 4 significant digits.
Explanation:
<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>A</u><u>:</u>
Let the x-axis be (+) towards the right and y-axis be (+) in the upward direction. We can write the net forces on mass
as


Substituting (2) into (1), we get

where
, the frictional force on
Set this aside for now and let's look at the forces on 
<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>B</u><u>:</u>
Let the x-axis be (+) up along the inclined plane. We can write the forces on
as


From (5), we can solve for <em>N</em> as

Set (6) aside for now. We will use this expression later. From (3), we can see that the tension<em> </em><em>T</em><em> </em> is given by

Substituting (7) into (4) we get

Collecting similar terms together, we get

or
![a = \left[ \dfrac{m_B\sin30 - \mu_km_A}{(m_A + m_B)} \right]g\:\:\:\:\:\:\:\:\:(8)](https://tex.z-dn.net/?f=a%20%3D%20%5Cleft%5B%20%5Cdfrac%7Bm_B%5Csin30%20-%20%5Cmu_km_A%7D%7B%28m_A%20%2B%20m_B%29%7D%20%5Cright%5Dg%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%288%29)
Putting in the numbers, we find that
. To find the tension <em>T</em>, put the value for the acceleration into (7) and we'll get
. To find the force exerted by the inclined plane on block B, put the numbers into (6) and you'll get 