Answer:
3(2*-1)^2
solved is: 12
Step-by-step explanation:
let's firstly convert the mixed fractions to improper fractions and then divide.
![\bf \stackrel{mixed}{1\frac{1}{4}}\implies \cfrac{1\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{5}{4}}~\hfill \stackrel{mixed}{3\frac{4}{5}}\implies \cfrac{3\cdot 5+4}{5}\implies \stackrel{improper}{\cfrac{19}{5}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{5}{4}\div\cfrac{19}{5}\implies \cfrac{5}{4}\cdot \cfrac{5}{19}\implies \cfrac{25}{76}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%204%2B1%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B5%7D%7B4%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B3%5Cfrac%7B4%7D%7B5%7D%7D%5Cimplies%20%5Ccfrac%7B3%5Ccdot%205%2B4%7D%7B5%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B19%7D%7B5%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B5%7D%7B4%7D%5Cdiv%5Ccfrac%7B19%7D%7B5%7D%5Cimplies%20%5Ccfrac%7B5%7D%7B4%7D%5Ccdot%20%5Ccfrac%7B5%7D%7B19%7D%5Cimplies%20%5Ccfrac%7B25%7D%7B76%7D)
Hi there!


We can calculate dy/dx using implicit differentiation:
xy + y² = 6
Differentiate both sides. Remember to use the Product Rule for the "xy" term:
(1)y + x(dy/dx) + 2y(dy/dx) = 0
Move y to the opposite side:
x(dy/dx) + 2y(dy/dx) = -y
Factor out dy/dx:
dy/dx(x + 2y) = -y
Divide both sides by x + 2y:
dy/dx = -y/x + 2y
We need both x and y to find dy/dx, so plug in the given value of x into the original equation:
-1(y) + y² = 6
-y + y² = 6
y² - y - 6 = 0
(y - 3)(y + 2) = 0
Thus, y = -2 and 3.
We can calculate dy/dx at each point:
At y = -2: dy/dx = -(-2) / -1+ 2(-2) = -2/5.
At y = 3: dy/dx = -(3) / -1 + 2(3) = -3/5.