We are given an object that is speeding up on a level ground.
Let's remember that the gravitational energy depends on the change in height, therefore, if the object is not changing its height it means that the gravitational energy remains constant.
The kinetic energy depends on the velocity. If the velocity is increasing this means that the kinetic energy is also increasing.
Now, every change in velocity requires acceleration and acceleration requires a force. The force and the distance that the object moves are equivalent to the work that is transferred to the object and therefore, the change in kinetic energy. This means that the total energy of the system increases as work is transferred to the mass.
We have that the total energy of the system increases in the form of kinetic energy and that the gravitational potential energy remains constant. Therefore, the diagrams should look like pie charts that grow but the area of the segment of the potential energy stays the same. It should look similar to the following.
Answer:
hshawi hdsdk
done and my name is fricking bella your gonna die
<h3>Question -:</h3>
The Earth orbits around the sun because the gravitational force that the sun
exerts on the Earth:
O A. causes Earth's acceleration toward the sun.
O B. is very small because the sun is so far from the Earth.
O c. is smaller than the force the Earth exerts on the sun.
O D. pushes the Earth away from the sun.
<h3>Answer -:</h3>
O A. causes Earth's acceleration toward the sun.
<em>I </em><em>hope </em><em>this</em><em> </em><em>helps</em><em>,</em><em> </em><em>have </em><em>a </em><em>nice </em><em>time </em><em>ahead!</em>
Answer: F = 1391 N
Explanation:
The information given to you are:
Mass M = 1300 kg
Acceleration a = 1.07 m/s^2
The magnitude of the force striking the building will be
F = ma
Where
F = force
Substitute mass M and acceleration a into the formula
F = 1300 × 1.07
F = 1391 N
Therefore, the wrecking ball strikes the building with a force of 1391 N
Answer:
Action: Gravity pulls on the ball.
Reaction: The ball falls to the ground.
Explanation: