I believe it is the first one
For example, an internal combustion engine converts<span> the </span>potential<span> chemical </span>energy <span>in gasoline and oxygen into </span>thermal energy<span> which, by causing pressure and performing work on the pistons, is </span>transformed<span> into the mechanical </span>energy<span> that accelerates the vehicle (increasing its kinetic </span>energy<span>).</span><span />
Answer:d
Explanation:
From Gauss law Electric field inside a surface is directly proportional to the charge enclosed in it.
Electric field inside a spherical shell is zero and hence there is no charge inside the spherical shell because q charge induces a -q charge on inside surface of spherical shell.
and to counter it there is q charge on the surface. So total charge outside the surface is Q+q
Answer
688.32m and 277.44m
Explanation :
⠀

The X and Y coordinates of the rocket relative of firing
⠀
⠀

⠀
⠀

⠀
⠀
<u>The</u><u> </u><u>horizontal</u><u> </u><u>range</u><u> </u><u>of</u><u> </u><u>projectile</u><u> </u><u>at</u><u> </u><u>x</u><u>.</u><u> </u>
⠀

⠀
⠀

⠀
⠀

⠀
⠀
The vertical position of projectile at y.
⠀
⠀

⠀
⠀

⠀
⠀

⠀
⠀
⠀
<h3><u>Henceforth</u><u>,</u><u> </u><u>the</u><u> </u><u>distance</u><u> </u><u>at</u><u> </u><u>horizon</u><u> </u><u>is</u><u> </u><u>6</u><u>8</u><u>8</u><u>.</u><u>3</u><u>2</u><u>m</u><u> </u><u>and</u><u> </u><u>at</u><u> </u><u>vertical</u><u> </u><u>is</u><u> </u><u>2</u><u>7</u><u>7</u><u>.</u><u>4</u><u>4</u><u>m</u><u>.</u></h3>
Answer:
Explanation:
The problem is based on the concept of Doppler's effect of em wave .
Expression for apparent frequency can be given as follows
n = N x (V - v ) / ( V + v )
n is apparent frequency , N is real frequency , V is velocity of light and v is velocity of cloud.
n = 6 x 10⁹ ( 3 x 10⁸ - 8.52 ) / ( 3 x 10⁸ + 8.52 )
= 6 x 10⁹ ( 3 x 10⁸ ) ( 3 x 10⁸ + 8.52 )⁻¹
= 6 x 10⁹ ( 3 x 10⁸ ) ( 3 x 10⁸)⁻¹ ( 1 + 8.52/3 x 10⁸ )⁻¹
= 6 x 10⁹ ( 1 - 8.52/3 x 10⁸ )
= 6 x 10⁹ - 6 x 10⁹x 8.52/ (3 x 10⁸ )
= 6 x 10⁹ 1 - 170 .
So change in frequency = 170 approx.