| Impedance | = √ [R² +(ωL)²]
R² = 6800² = 4.624 x 10⁷
(ωL)² = (2 · π · f · 2.3 · 10⁻³)²
= 2.0884 x 10⁻⁴ f²
| Z | = √[ (4.624 x 10⁷) + (2.0884 x 10⁻⁴ f²) ] = 1.6 x 10⁵
(1.6 x 10⁵)² = (4.624 x 10⁷) + (2.0884 x 10⁻⁴ f²)
(2.56 x 10¹⁰) - (4.624 x 10⁷) = 2.0884 x 10⁻⁴ f²
Frequency² = (2.56 x 10¹⁰ - 4.624 x 10⁷) / 2.0884 x 10⁻⁴
= 2.555 x 10¹⁰ / 2.0884 x 10⁻⁴
= 1.224 x 10¹⁴
= 122,400 GHz <== my calculation
11.1 MHz <== online impedance calculator
Obviously, I must have picked up some rounding errors
in the course of my calculation.
I attached a picture of the diagram associated with this question.
Now,
When we check the vertical components of the tension in the rope, we will find that we have two equal components acting upwards.
These two components support the weight and each of them has a value of TcosΘ
The net force acting on the body is zero.
Fnet=Force of tension acting upwards-Force due to weight acting downwards
0 = 2TcosΘ -W
W = 2TcosΘ
T = W / 2cosΘ
Answer: over burden is dissolved by water wind and acids
Answer:
3.7 m/s^2
Explanation:
The period of a simple pendulum is given by:

where L is the length of the pendulum and g is the free-fall acceleration on the planet.
Calling L the length of the pendulum, we know that:
is the period of the pendulum on Earth, and
is the free-fall acceleration on Earth
is the period of the pendulum on Mars, and
is the free-fall acceleration on Mars
Dividing the two expressions we get

And re-arranging it we can find the value of the free-fall acceleration on Mars:

Answer:
1/f = 1/o + 1 /i thin lens equation
1 / i = 1/f - 1/o = (o - f) / (o f) rearranging
or i = o f / (o - f) for the image distance
This image will be positive (real) with values given
m = -i / o magnification
m = - f / (o - f) shows m is negative and the image inverted
Also, since o here is large m will be small and the image is small
I think they mean A as the right answer
Different texts use different terms but here i is image distance and o the object distance