We're told that the planets have EQUAL MASS.
If that's true, then the strength of the gravitational forces between
each planet and the star depends only on the distance between
them ... the farther a planet is from the star, the smaller the
gravitational forces are IF we're talking about planets with
equal masses.
Planet-X is closer to the star, and Planet-Y is farther from it.
From this we know that the gravitational forces between the
star and Planet-X are greater, and the forces between the star
and Planet-Y are smaller.
'A' says this.
'B' is totally absurd, because it talks about gravity repelling things.
'C' says exactly the opposite for the two planets.
'D' says that distance doesn't matter. We know this is absurd,
simply because we're never pulled toward Jupiter in our daily life.
'Intelligent person' could be a possibility for your answer, also a 'scientist' or a 'philosopher' as well as 'an old person' may equal to the meaning of being 'wise humans'.
The moon is thought to have an iron-rich core whose radius
is 330 km, plus or minus an uncertainty of 20 km.
That puts its diameter in the range of 620 km to 700 km.
Answer:
non-accelerated movement
velocity versus time a horizontal straight line.
distance versus time gives a horizontal straight line.
accelerated motion
graph of velocity versus time s an inclined line and the slope
graph of distance versus time is a parabola of the form
Explanation:
In kinematics there are two types of steely and non-accelerated movements
In a the velocity of the body is constant therefore a speed hook against time gives a horizontal straight line.
A graph of distance versus time is a straight line whose slope is the velocity of the body
x = v t
In an accelerated motion the velocity changes linearly with time, so a graph of velocity versus time is an inclined line and the slope is the value of the acceleration of the body
v = v₀ + a t
A graph of distance versus time is a parabola of the form
x =v₀ t + ½ a t²