Answer:
At the top of the hill.
Explanation:
As the roller coaster goes up the hill, kinetic energy (K.E) decreases, gravitational potential energy (G.P.E) increases .
As it reach the top of the hill, K.E becomes zero and G.P.E reaches <em>m</em><em>a</em><em>x</em><em>i</em><em>m</em><em>u</em><em>m</em> .
As it goes down the hill, K.E starts to increase and G.P.E decrease .
At the bottom of the hill, K.E reaches <em>maximum</em> and G.P.E becomes zero .
(Correct me it I am wrong)
Explanation:
Take south to be negative.
a. Momentum is mass times velocity.
p = mv
p = (540 kg) (-6 m/s)
p = -3240 kg m/s
p = 3240 kg m/s south
b. Impulse = change in momentum
J = Δp
Since the mass is constant:
J = mΔv
J = (540 kg) (-4 m/s − (-6 m/s))
J = 1080 kg m/s
J = 1080 kg m/s north
<span>B. shining a bright light on the objects
and testing for decomposition </span>
<span>
In explanation, chemical property is a
characteristic of a certain substance came from an outcome due to chemical change
or reaction. In the situation above, more specifically toxicity is involved in
the chemical property/change. Hence, when the object is tested for
decomposition. Like for an example of decomposition simply in metals, rusting. Rusting
a process of degeneration of metals. Here it works the same. Toxicity is how
much damage did a certain entity do to the object. </span>
Answer:
(a). The charge on the outer surface is −2.43 μC.
(b). The charge on the inner surface is 4.00 μC.
(c). The electric field outside the shell is 
Explanation:
Given that,
Charge q₁ = -4.00 μC
Inner radius = 3.13 m
Outer radius = 4.13 cm
Net charge q₂ = -6.43 μC
We need to calculate the charge on the outer surface
Using formula of charge



The charge on the inner surface is q.


We need to calculate the electric field outside the shell
Using formula of electric field

Put the value into the formula



Hence, (a). The charge on the outer surface is −2.43 μC.
(b). The charge on the inner surface is 4.00 μC.
(c). The electric field outside the shell is 
Answer:
Explanation:
kinetic energy required = 1.80 MeV
= 1.8 x 10⁶ x 1.6 x 10⁻¹⁹ J
= 2.88 x 10⁻¹³ J
If v be the velocity of proton
1/2 x mass of proton x v² = 2.88 x 10⁻¹³
= .5 x 1.67 x 10⁻²⁷ x v² = 2.88 x 10⁻¹³
v² = 3.45 x 10¹⁴
v = 1.86 x 10⁷ m /s
If V be the potential difference required
V x e = kinetic energy . where e is charge on proton .
V x 1.6 x 10⁻¹⁹ = 2.88 x 10⁻¹³
V = 1.8 x 10⁶ volt .