Answer:
The confidence interval for this proportion = (0.09, 0.13)
Step-by-step explanation:
Confidence Interval for Proportion =
p ± z ×√p(1 - p/n)
p = proportion = x /n
x = 71
n = 635
p = 71/635
p = 0.1118110236
p ≈ 0.1118
z score for 90% confidence interval = 1.645
Confidence Interval =
0.1118 ± 1.645 × √0.1118 (1 - 0.1118)/635
0.1118 ± 1.645 × √0.09930076/635
0.1118 ± 1.645 × √0.0001563791
0.1118 ± 1.645 × 0.0125051629
0.1118 ± 0.020570993
Confidence Interval =
0.1118 - 0.020570993
= 0.091229007
Approximately to the nearest hundredth ≈ 0.09
0.1118 + 0.020570993
= 0.132370993
Approximately to the nearest hundredth = 0.13
Therefore, the confidence interval for this proportion = (0.09, 0.13)