200 joules of work energy are involved. That's all we need to know to answer the question. Once we know that 200 joules of work energy are involved, we don't care what was lifted, or how far, or how long it took, or how many people worked on it, or how much they were paid, or what was the distribution of their gender identities, or the ethnic diversity among the team. or what day each of them celebrates as their sabbath. Any other information besides the 200 joules is only there to distract us, and see whether we're paying attention.
Power = (work or energy) / (time to do the work or move the energy)
Power = (200 joules) / (5 seconds)
<em>Power = 40 watts</em>
Answer:
a-
V= IR
9V = I ×( 12+6)
I = 9/ 18 A = 0.5 A
b
V=IR
240 = 6 A ×( 20 + R)
40 = 20 + R
R = 20 ohm
c
resultant resistance of the 2 parallel resistances= Ro
1/Ro = 1/ 5 + 1/ 20
1/Ro =( 20+5)/100
= 1/Ro = 1/4
Ro= 4 ohm
V=IR
V = 2A × ( 1+ 4 OHM)
V = 10V
d
equivalent resistance = Ro
1/Ro = 1/(2+8) + 1/(5+5)
1/Ro = 1/10 +1/10
2/10 = 1/ Ro
Ro= 10/2 = 5 ohm
V = IR
12V = I × 5Ohm
I=2.4 A
A light year is the DISTANCE light travels through vacuum in 1 year.
If light is traveling through vacuum, then it's traveling at the speed of light in vacuum. If a student at home at the beginning of the trip is holding the clock, then ...
Traveling 1 light year takes 1 year.
Traveling 2 light years takes 2 years.
Traveling 3 light years takes 3 years.
Traveling 10 light years takes 10 years.
If the light is traveling through some other substance, or if the clock is traveling along with the light, then these numbers all change.
YOU cannot travel at the speed of light. We have to just leave it at that
The distance is 17 and the displacement is 1