D. physical property
the bonds between molecules of mercury are breaking so it's physical and it's not changing the chemical composition of the substance
The equation for the de Broglie wavelength is:
<span>λ = (h/mv) √[1-(v²/c²)], </span>
<span>where h is Plank's Constant, m is the rest mass, v is velocity, and c is the velocity of light in vacuum. However, if c>>v (and it is, in this case) then the expression under the radical sign approaches 1, and the equation simplifies to: </span>
<span>λ = h/mv. </span>
<span>Substituting, (remember to convert the mass to kg, since 1 J = 1 kg·m²/s²): </span>
<span>λ = (6.63x10^-34 J·s) / (0.0459 kg) (72.0 m/s) = 2.00x10^-34 m.</span>
Let the mass of the person be m. Total momentum is conserved (because the exterior forces on the system are balanced), especially the component in the vertical direction.
Given that,
Mass of gallon is M
Let man mass be m
Velocity of man is v
Let velocity if ballot be Vb
When the person begin to move we have
Conservation of momentum
mv + MVb=0
MVb=-mv
Vb= -(m/M) v
Given that the mass of man is less than mass of balloon. i.e. m<M
So, if m<M, then, m/M <1
Therefore, .
Vb= -(m/M) v
Vb< -v
This implies that the velocity of balloon is less than the velocity of man and if is also moving in opposite direction
So the man is moving upward, then the balloon is moving downward and it's velocity is less than the velocity of man,
The answer is C
Down with a speed less than v
Answer:
What is the acceleration of an object moving at a constant speed?
The Meaning of Constant Acceleration
The data table above show an object changing its velocity by 10 m/s in each consecutive second. This is referred to as a constant acceleration since the velocity is changing by a constant amount each second.
Answer:
λ = 5940 Angstroms
Explanation:
This is an exercise of the relativistic Doppler effect
f’= f √((1- v / c) / (1 + v / c))
Where the speed in between the strr and the observer is positive if they move away
Let's use the relationship
c = λ f
f = c /λ
We replace
c /λ’ = c /λ √ ((1- v / c) / (1 + v / c))
λ = λ’ √ ((1- v / c) / (1 + v / c))
Let's calculate
v = 0.01 c
v = 0.01 3 10⁸
v= 3 10⁶ m / s
λ = 6000 √ [(1- 3 10⁶/3 10⁸) / (1+ 3 10⁶/3 10⁸)]
λ = 6000 √ [0.99 / 1.01]
λ = 5940 Angstroms