1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Klio2033 [76]
3 years ago
9

How long would it take to travel 10 light years at the speed of light?

Physics
1 answer:
Vladimir79 [104]3 years ago
6 0

A light year is the DISTANCE light travels through vacuum in 1 year.

If light is traveling through vacuum, then it's traveling at the speed of light in vacuum. If a student at home at the beginning of the trip is holding the clock, then ...

Traveling 1 light year takes 1 year.

Traveling 2 light years takes 2 years.

Traveling 3 light years takes 3 years.

Traveling 10 light years takes 10 years.

If the light is traveling through some other substance, or if the clock is traveling along with the light, then these numbers all change.

YOU cannot travel at the speed of light. We have to just leave it at that

You might be interested in
Potential difference is measured in units called
Masja [62]

Answer: Volt

Explanation:

5 0
3 years ago
Read 2 more answers
An electron moving to the left at 0.8c collides with a photon moving to the right. After the collision, the electron is moving t
SVETLANKA909090 [29]

Answer:

Wavelength = 2.91 x 10⁻¹² m, Energy = 6.8 x 10⁻¹⁴

Explanation:

In order to show that a free electron can’t completely absorb a photon, the equation for relativistic energy and momentum will be needed, along the equation for the energy and momentum of a photon. The conservation of energy and momentum will also be used.

E = y(u) mc²

Here c is the speed of light in vacuum and y(u) is the Lorentz factor

y(u) = 1/√[1-(u/c)²], where u is the velocity of the particle

The relativistic momentum p of an object of mass m and velocity u is given by

p = y(u)mu

Here y(u) being the Lorentz factor

The energy E of a photon of wavelength λ is

E = hc/λ, where h is the Planck’s constant 6.6 x 10⁻³⁴ J.s and c being the speed of light in vacuum 3 x 108m/s

The momentum p of a photon of wavelenght λ is,

P = h/λ

If the electron is moving, it will start the interaction with some momentum and energy already. Momentum of the electron and photon in the initial and final state is

p(pi) + p(ei) = p(pf) + p(ef), equation 1, where p refers to momentum and the e and p in the brackets refer to proton and electron respectively

The momentum of the photon in the initial state is,

p(pi) = h/λ(i)

The momentum of the electron in the initial state is,

p(ei) = y(i)mu(i)

The momentum of the electron in the final state is

p(ef) = y(f)mu(f)

Since the electron starts off going in the negative direction, that momentum will be negative, along with the photon’s momentum after the collision

Rearranging the equation 1 , we get

p(pi) – p(ei) = -p(pf) +p(ef)

Substitute h/λ(i) for p(pi) , h/λ(f) for p(pf) , y(i)mu(i) for p(ei), y(f)mu(f) for p(ef) in the equation 1 and solve

h/λ(i) – y(i)mu(i) = -h/λ(f) – y(f)mu(f), equation 2

Next write out the energy conservation equation and expand it

E(pi) + E(ei) = E(pf) + E(ei)

Kinetic energy of the electron and photon in the initial state is

E(p) + E(ei) = E(ef), equation 3

The energy of the electron in the initial state is

E(pi) = hc/λ(i)

The energy of the electron in the final state is

E(pf) = hc/λ(f)

Energy of the photon in the initial state is

E(ei) = y(i)mc2, where y(i) is the frequency of the photon int the initial state

Energy of the electron in the final state is

E(ef) = y(f)mc2

Substitute hc/λ(i) for E(pi), hc/λ(f) for E(pf), y(i)mc² for E(ei) and y(f)mc² for E(ef) in equation 3

Hc/λ(i) + y(i)mc² = hc/λ(f) + y(f)mc², equation 4

Solve the equation for h/λ(f)

h/λ(i) + y(i)mc = h/λ(f) + y(f)mc

h/λ(f) = h/lmda(i) + (y(i) – y(f)c)m

Substitute h/λ(i) + (y(i) – y(f)c)m for h/λ(f)  in equation 2 and solve

h/λ(i) -y(i)mu(i) = -h/λ(f) + y(f)mu(f)

h/λ(i) -y(i)mu(i) = -h/λ(i) + (y(f) – y(i))mc + y(f)mu(f)

Rearrange to get all λ(i) terms on one side, we get

2h/λ(i) = m[y(i)u(i) +y(f)u(f) + (y(f) – y(i)c)]

λ(i) = 2h/[m{y(i)u(i) + y(f)u(f) + (y(f) – y(i))c}]

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

Calculate the Lorentz factor using u(i) = 0.8c for y(i) and u(i) = 0.6c for y(f)

y(i) = 1/[√[1 – (0.8c/c)²] = 5/3

y(f) = 1/√[1 – (0.6c/c)²] = 1.25

Substitute 6.63 x 10⁻³⁴ J.s for h, 0.511eV/c2 = 9.11 x 10⁻³¹ kg for m, 5/3 for y(i), 0.8c for u(i), 1.25 for y(f), 0.6c for u(f), and 3 x 10⁸ m/s for c in the equation derived for λ(i)

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

λ(i) = 2(6.63 x 10-34)/[(9.11 x 10-31)(3 x 108){(5/3)(0.8) + (1.25)(0.6) + ((1.25) – (5/3))}]

λ(i) = 2.91 x 10⁻¹² m

So, the initial wavelength of the photon was 2.91 x 10-12 m

Energy of the incoming photon is

E(pi) = hc/λ(i)

E(pi) = (6.63 x 10⁻³⁴)(3 x 10⁸)/(2.911 x 10⁻¹²) = 6.833 x 10⁻¹⁴ = 6.8 x 10⁻¹⁴

So the energy of the photon is 6.8 x 10⁻¹⁴ J

6 0
3 years ago
Which statements define factors that contribute to the decline of Roman Empire
USPshnik [31]
The Huns' invasion of Europe caused a mass migration driving Germanic tribes of Northern Europe to the borders of the Roman Empire which led to the Barbarian attacks on Rome. 
7 0
3 years ago
Hold a pencil in front of your eye at a position where its blunt end just blocks out the Moon.
Valentin [98]

Answer:

D = 3.55 \times 10^6 m

Explanation:

Light rays coming from moon is blocked by the pencil

so as per figure we know that angle subtended by pencil and angle subtended by moon must be same

so we have

Angle = \frac{Arc}{Radius}

so we have

\frac{D}{3.8 \times 10^8 m} = \frac{0.7 cm}{75 cm}

so we have

D = 3.55 \times 10^6 m

4 0
3 years ago
What do you think happens to the temperature when water changes to gas?
Olenka [21]

Answer:

it gets hot and more hot until it turns to gas

Explanation:

5 0
3 years ago
Other questions:
  • All the terrestrial planets have
    10·1 answer
  • Which property of gases best explains the ability of air bags to cushion the force of impact during a car accident?
    10·1 answer
  • A 1250 kg car is stopped at a traffic light. A 3550 kg truck moving at 8.33 m/s hits the car from behind. If bumpers lock, how f
    8·1 answer
  • A quantum system has three states, with energies 0, 1.6 × 10-21, and 1.6 × 10-21, in Joules. It is coupled to an environment wit
    9·1 answer
  • Two identical trucks have mass 5500 kg when empty, and the maximum permissible load for each is 8000 kg. The first truck, carryi
    5·1 answer
  • How much energy in Joules (J) would an electric heater that draws 9.5 A when connected to a 120 V supply use if the heater were
    9·1 answer
  • Consider a long cylindrical charge distribution of radius R = 17 cm with a uniform charge density of rho = 15 C/m3. Find the ele
    5·1 answer
  • Entific findings are useful
    15·1 answer
  • A ball is launched straight up with initial speed of 30.0 m/s. What is the ball's velocity when it comes back to its original po
    7·1 answer
  • An object is approaching you while making a sound.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!