Perhaps the easiest way to find the midpoint between two given points is to average their coordinates: add them up and divide by 2.
A) The midpoint C' of AB is
.. (A +B)/2 = ((0, 0) +(m, n))/2 = ((0 +m)/2, (0 +n)/2) = (m/2, n/2) = C'
The midpoint B' is
.. (A +C)/2 = ((0, 0) +(p, 0))/2 = (p/2, 0) = B'
The midpoint A' is
.. (B +C)/2 = ((m, n) +(p, 0))/2 = ((m+p)/2, n/2) = A'
B) The slope of the line between (x1, y1) and (x2, y2) is given by
.. slope = (y2 -y1)/(x2 -x1)
Using the values for A and A', we have
.. slope = (n/2 -0)/((m+p)/2 -0) = n/(m+p)
C) We know the line goes through A = (0, 0), so we can write the point-slope form of the equation for AA' as
.. y -0 = (n/(m+p))*(x -0)
.. y = n*x/(m+p)
D) To show the point lies on the line, we can substitute its coordinates for x and y and see if we get something that looks true.
.. (x, y) = ((m+p)/3, n/3)
Putting these into our equation, we have
.. n/3 = n*((m+p)/3)/(m+p)
The expression on the right has factors of (m+p) that cancel*, so we end up with
.. n/3 = n/3 . . . . . . . true for any n
_____
* The only constraint is that (m+p) ≠ 0. Since m and p are both in the first quadrant, their sum must be non-zero and this constraint is satisfied.
The purpose of the exercise is to show that all three medians of a triangle intersect in a single point.
Answer:
Option 3 - 
Step-by-step explanation:
Given : Perpendicular to the line
; containing the point (4,4).
To Find : An equation for the line with the given properties ?
Solution :
We know that,
When two lines are perpendicular then slope of one equation is negative reciprocal of another equation.
Slope of the equation 
Converting into slope form
,
Where m is the slope.


The slope of the equation is 
The slope of the perpendicular equation is 
The required slope is 

The required equation is 
Substitute point (x,y)=(4,4)



Substitute back in equation,

Therefore, The required equation for the line is 
So, Option 3 is correct.
Answer:
300 paper clips in one box
300 multiply to 10 box =3,000 paper clips
Answer:
Nope but I hope you find one soon. -Your friend, Bill Cipher
Step-by-step explanation:
Answer:
The average installation cost of laminate flooring ranges between $2 and $8 per square foot.
Step-by-step explanation: