1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jekas [21]
3 years ago
6

*Please I need help quickly* Approximate the mean of the frequency distribution for the ages of the residents of a town.

Mathematics
2 answers:
Cerrena [4.2K]3 years ago
5 0

Answer:

The mean age of the frequency distribution for the ages of the residents of a town is 43 years.

Step-by-step explanation:

We are given with the following frequency distribution below;

 

     Age                      Frequency (f)               X                    X \times f

     0 - 9                            30                         4.5                   135

    10 - 19                           32                        14.5                  464

    20 - 29                         12                         24.5                 294

    30 - 39                         20                        34.5                 690

    40 - 49                         25                        44.5                1112.5

    50 - 59                         53                        54.5                2888.5

    60 - 69                         49                        64.5                3160.5

    70 - 79                          13                         74.5                968.5

    80 - 89                  <u>        8        </u>                  84.5         <u>        676        </u>

    Total                      <u>      242      </u>                                  <u>      10389      </u>

Now, the mean of the frequency distribution is given by the following formula;

                          Mean =  \frac{\sum X \times f}{\sum f}

                                     =  \frac{10389}{242}  = 42.9 ≈ 43 approx.

Hence, the mean age of the frequency distribution for the ages of the residents of a town is 43 years.

Akimi4 [234]3 years ago
5 0

Answer:

The mean age of the frequency distribution for the ages of the residents of a town is 43 years.

Step-by-step explanation:

We are given with the following frequency distribution below;

 

   Age                      Frequency (f)               X                    

   0 - 9                            30                         4.5                   135

  10 - 19                           32                        14.5                  464

  20 - 29                         12                         24.5                 294

  30 - 39                         20                        34.5                 690

  40 - 49                         25                        44.5                1112.5

  50 - 59                         53                        54.5                2888.5

  60 - 69                         49                        64.5                3160.5

  70 - 79                          13                         74.5                968.5

  80 - 89                          8                          84.5                676        

  Total                            242                                              10389      

Now, the mean of the frequency distribution is given by the following formula;

                        Mean =  

                                   =    = 42.9 ≈ 43 approx.

Hence, the mean age of the frequency distribution for the ages of the residents of a town is 43 years

You might be interested in
Hi please help i’ll give brainliest please
tatiyna

Answer:

5x=90 x=90/5=18. So, the answer is 18.

5 0
3 years ago
Read 2 more answers
N + 3m; use m = 3, and n = 1
musickatia [10]

Answer:

10

Step-by-step explanation:

  • plug 3 into m and plug 1 into n
  • order of operations say you multiple first so you multiple 3 times 3 which equals 9
  • then you add 1 and 9 which equals 10
4 0
3 years ago
Several terms of a sequence {an}n=1 infinity are given. A. Find the next two terms of the sequence. B. Find a recurrence relatio
s344n2d4d5 [400]

Answer:

A)\frac{1}{1024},\frac{1}{4096}

B) \left\{\begin{matrix}a(1)=1 & \\ a(n)=a(n-1)*\frac{1}{4} &\:for\:n=1,2,3,4,... \end{matrix}\right.

C) \\a_{n}=nq^{n-1} \:for\:n=1,2,3,4,...

Step-by-step explanation:

1) Incomplete question. So completing the several terms:\left \{a_{n}\right \}_{n=1}^{\infty}=\left \{ 1,\frac{1}{4},\frac{1}{16},\frac{1}{64},\frac{1}{256},... \right \}

We can realize this a Geometric sequence, with the ratio equal to:

q=\frac{1}{4}

A) To find the next two terms of this sequence, simply follow multiplying the 5th term by the ratio (q):

\frac{1}{256}*\mathbf{\frac{1}{4}}=\frac{1}{1024}\\\\\frac{1}{1024}*\mathbf{\frac{1}{4}}=\frac{1}{4096}\\\\\left \{ 1,\frac{1}{4},\frac{1}{16},\frac{1}{64},\frac{1}{256},\mathbf{\frac{1}{1024},\frac{1}{4096}}\right \}

B) To find a recurrence a relation, is to write it a function based on the last value. So that, the function relates to the last value.

\left\{\begin{matrix}a(1)=1 & \\ a(n)=a(n-1)*\frac{1}{4} &\:for\:n=1,2,3,4,... \end{matrix}\right.

C) The explicit formula, is one valid for any value since we have the first one to find any term of the Geometric Sequence, therefore:

\\a_{n}=nq^{n-1} \:for\:n=1,2,3,4,...

6 0
3 years ago
Pls answer the question attached
barxatty [35]

\huge\mathfrak{\underline{answer:}}

\large\bf{\angle ACD = 105°}

__________________________________________

\large\bf{\underline{Here:}}

  • BCD is an isosceles right triangle , right angled at D
  • ABC is an equilateral triangle

\large\bf{\underline{To\:find:}}

  • ∠ ACD

\large\bf{In\: triangle\:ABC:}

❒ Sum of all angles is 180° , since it is an equilateral triangle all the three angles would be same

\large\bf{\underline{So}}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\bf{⟼\angle ACB = \frac{180}{3}}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\bf{⟼\angle ACB = 60°}

\large\bf{In\: triangle\:BDC}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\bf{⟼\angle D = 90°}

\bf{⟼\angle DBC =\angle DCB }(Isosceles triangle)

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\bf{⟼\angle DBC + \angle BDC + \angle DCB = 180° }

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\bf{⟼2\angle DCB + 90° = 180°}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\bf{⟼2\angle DCB = 180 -90}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\bf{⟼\angle DCB = \frac{90}{2}}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\bf{⟼\angle DCB = 45°}

\large\bf{\underline{Therefore,}}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\bf{⟹\angle ACD = \angle ACB + \angle DCB}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\bf{⟹\angle ACD = 60+45}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\large\bf{⟹\angle ACD = 105°}

6 0
3 years ago
Given the function f(x) = 2x-5 and g(x), which function has a greater slope?​
adell [148]

Answer:

g(x) has a greater slope

Step-by-step explanation:

step 1

Find the slope of f(x)

we have

f(x)=2x-5

This is a linear function in slope intercept form

f(x)=mx+b

where

m is the slope

b is the y-intercept

so

m=2

step 2

Find the slope of g(x)

take two points from the table

(2,0) and (4,5)

m=(5-0)/(4-2)\\m=5/2=2.5

step 3

Compare the slopes

2.5 > 2

so

The slope of g(x) is greater than the slope of f(x)

3 0
4 years ago
Other questions:
  • Given the following functions f(x) and g(x), solve f[g(10)] and select the correct answer below:
    15·2 answers
  • Select all the values that belong to the solution set of 9 ≤ 6 - y.
    15·1 answer
  • Pls helpppp i don’t want to fail
    12·2 answers
  • Work out the volume of a cuboid of edge 4cm by 4cm by 7cm
    9·1 answer
  • What is 13x15?<br> Answer for 18 points!
    12·1 answer
  • Plz help me someone!
    14·2 answers
  • The number of applicants to a university last year was 11,450. This year, the number of applicants grew by 2%. How
    8·1 answer
  • Suppose that y varies inversely with x. Write an equation for the inverse variation. Y =4 when x =7
    10·1 answer
  • Giving brainliest to CORRECT answer.
    8·2 answers
  • Find the product<br> (4/5)(9/5)(-1/2)<br><br> a) -18/25<br> b)-25/18<br> c)18/25<br> d)8/25
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!