1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scorpion4ik [409]
3 years ago
7

SOLVES. 'x+4 - 3x = 1+x​

Mathematics
1 answer:
saw5 [17]3 years ago
8 0

Answer:

x =1

Step-by-step explanation:

x + 4 - 3x = 1 + x

Combine like terms:

x - 3x

==> -2x

4 - 2x = 1 + x

Subtract x to each side:

-2x - x        x - x

-3x                 0

4 - 3x = 1

Subtract 4 from each side:

4 - 4             1 - 4

0                   -3

-3x = -3

Divide -3 from each side:

\frac{-3x}{-3}  = \frac{-3}{-3}

==> x = 1

You might be interested in
Select the point that is a solution to the system of inequalities.<br> y≤2x-2<br> y≤ x²-3x
miss Akunina [59]

Both statements are true. Therefore (4,2) is a solution and option D is correct.

The given inequalities are y\leq 2x-2 and y\leq x^{2} -3x.

We need to select the point that is a solution to the system of inequalities (-2,-1), (1,3), (2,1) and (4,2).

<h3>What is an example of a system of inequalities in real life?</h3>

Inequalities can be seen in the speed limits on roads, the minimum age for seeing certain movies, and the distance you have to walk to go to the park. Inequalities represent a limit of what is permitted or achievable rather than a precise quantity.

Any point is a solution to this system of inequality if it satisfies both inequalities.

Check the inequalities by each option.

For (-2, -1), -1\leq 2(-2)-2 \implies -1\leq -6.

This statement is false because -1 is greater than -6. Therefore (-2,-1) is not a solution and option A is incorrect.

For (1, 3), 3\leq 2(1)-2 \implies 3\leq 0

This statement is false because 3 is greater than 0. Therefore (1,3) is not a solution and option B is incorrect.

For (2,1), 1\leq 2(2)-2 \implies 1\leq 2.

1\leq 2^{2} -3(2) \implies 1\leq -2

This statement is false because 1 is greater than -2. Therefore (2,1) is not a solution and option C is incorrect.

For (4,2), 2\leq 2(4)-2 \implies 2\leq 6

2\leq 4^{2} -3(4) \implies 2\leq 4

Both statements are true. Therefore (4,2) is a solution and option D is correct.

To learn more about inequalities visit:

brainly.com/question/20383699.

#SPJ1

7 0
2 years ago
Determine the distance between -10 and 5. HELP
kow [346]

Answer: 15

Step-by-step explanation: Good luck! :D

7 0
3 years ago
Read 2 more answers
Explain why (a+b)^2 = a^2+b^2 if and only if a=0 or b=0
const2013 [10]

Hope this helps! Because when you would fill in the variables 0=0 which which make the expression too that they’d equal the same.

7 0
3 years ago
14. Triangle QRS is shown below.
kifflom [539]
Ummm you tell me lol
4 0
3 years ago
Read 2 more answers
There are 100 sophomores at the school. 85% of them are good students. What would be the percent of good students at school if (
klemol [59]

Answer:

77%

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • ! The snowfall between midnight and 6 A.M.
    11·1 answer
  • In G(n) = 6(0.5)n-1, what is the first term of the sequence?
    15·1 answer
  • to angie's ladder was 22 feet tall above the ground lying against the wall of her house.the base of the ladder was 5 feet tall.w
    11·1 answer
  • I need help people what is 215÷ 9
    9·2 answers
  • Anybody Know This. ?
    15·1 answer
  • Which equation represents this situation? y = 1.25x ) Which graph represents the situation? ​
    8·1 answer
  • If x = 10 find the value of<br>2x + 9​
    5·2 answers
  • Please help on question 12 or 13 as soon as possible
    15·1 answer
  • Which of the following expressions is equivalent to the expression 36 + 42?
    8·2 answers
  • 11. What values of a, b, and c make this<br> equation true?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!