Just did a specific one of these; let's do the general case.
The point nearest the origin is (a,b).
The line from the origin through the point is

The line we seek is perpendicular to this one. We swap the coefficients on x and y, negating one, to get the perpendicular family of lines. We set the constant by plugging in the point (a,b):


That's standard form; let's plug in the numbers:


Answer:
3
Step-by-step explanation:
We found the factors and prime factorization of 9 and 12. The biggest common factor number is the GCF number. So the greatest common factor 9 and 12 is 3.
Hope this helps!
40% means 0.4 .
So . . . . . 7 = 0.4 N .
Divide each side by 0.4 . . . N = 7/0.4 = 17.5
8.9
The equation for the grain size is expressed as the equality:
Nm(M/100)^2 = 2^(n-1)
where
Nm = number of grains per square inch at magnification M.
M = Magnification
n = ASTM grain size number
Let's solve for n, then substitute the known values and calculate.
Nm(M/100)^2 = 2^(n-1)
log(Nm(M/100)^2) = log(2^(n-1))
log(Nm) + 2*log(M/100) = (n-1) * log(2)
(log(Nm) + 2*log(M/100))/log(2) = n-1
(log(Nm) + 2*log(M/100))/log(2) + 1 = n
(log(33) + 2*log(270/100))/log(2) + 1 = n
(1.51851394 + 2*0.431363764)/0.301029996 + 1 = n
(1.51851394 + 0.862727528)/0.301029996 + 1 = n
2.381241468/0.301029996 + 1 = n
7.910312934 + 1 = n
8.910312934 = n
So the ASTM grain size number is 8.9
If you want to calculate the number of grains per square inch, you'd use the
same formula with M equal to 1. So:
Nm(M/100)^2 = 2^(n-1)
Nm(1/100)^2 = 2^(8.9-1)
Nm(1/10000) = 2^7.9
Nm(1/10000) = 238.8564458
Nm = 2388564.458
Or about 2,400,000 grains per square inch.