1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miss Akunina [59]
3 years ago
3

Angles 1 and 2 form a right angle. 2 lines form a right angle. Another line extends between the 2 lines to form 2 angles. The to

p angle is labeled 1, and the bottom angle is labeled 2. Which word describes their measures? linear congruent complementary supplementary
Mathematics
1 answer:
Step2247 [10]3 years ago
7 0

Answer:

complementary

Step-by-step explanation:

yes

You might be interested in
Hattie had $3,000 to invest and wants to earn 10.6% interest per year. She will put some of the money into an account that earns
nevsk [136]

Answer:

900 at 12%

2100 at 10%

Step-by-step explanation:

Let x= amount invested at 12%

let y= amount invested at 10%

with that being said we can write the two equation

Equation 1: x+y=3000

Equation 2: 3000*.106=.12x+.1y

isolte x from equation 1

x= 3000-y

plug this into equation 2

318=.12(3000-y)+.1y

318=360-.12y+.1y

-42= -.02y

y= 2100

Plug this into equation 1

x+2100=3000

x=900

8 0
3 years ago
My brother wants to estimate the proportion of Canadians who own their house.What sample size should be obtained if he wants the
AVprozaik [17]

Answer:

a) n=\frac{0.675(1-0.675)}{(\frac{0.02}{1.64})^2}=1475.07

And rounded up we have that n=1476

b) n=\frac{0.5(1-0.5)}{(\frac{0.02}{1.64})^2}=1681

And rounded up we have that n=1681

Step-by-step explanation:

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The population proportion have the following distribution  

p \sim N(p,\sqrt{\frac{\hat p(1-\hat p)}{n}})  

The margin of error for the proportion interval is given by this formula:  

ME=z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}} (a)  

If solve n from equation (a) we got:  

n=\frac{\hat p (1-\hat p)}{(\frac{ME}{z})^2} (b)  

Part a

In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 90% of confidence, our significance level would be given by \alpha=1-0.9=0.1 and \alpha/2 =0.05. And the critical value would be given by:  

z_{\alpha/2}=\pm 1.64  

The margin of error for the proportion interval is given by this formula:  

ME=z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}    (a)  

And on this case we have that ME =\pm 0.02 and we are interested in order to find the value of n, if we solve n from equation (a) we got:  

n=\frac{\hat p (1-\hat p)}{(\frac{ME}{z})^2}   (b)  

And replacing into equation (b) the values from part a we got:

n=\frac{0.675(1-0.675)}{(\frac{0.02}{1.64})^2}=1475.07

And rounded up we have that n=1476

Part b

For this case since we don't have a prior estimate we can use \hat p =0.5

n=\frac{0.5(1-0.5)}{(\frac{0.02}{1.64})^2}=1681

And rounded up we have that n=1681

8 0
3 years ago
Please help with this practice sheet my parents gave me (show work pls)
dem82 [27]

Answer:

Answer:

Volume of cylinder =πr²h=π×4²×5=80π m³

=251.2m³

Volume of cuboid=l*b*h=7*3*2=42in³

Volume of cone =(⅓πr²h)+(⅓πr²h)⅓π×(6/2)²(12+8)=60πft³=188.4ft³

8 0
3 years ago
Read 2 more answers
True or False: An equation to find Circumference is C = πr2
SashulF [63]

Answer:

False

Step-by-step explanation:

It's actually C=πd d is diameter or C=πr^2

6 0
3 years ago
Read 2 more answers
Help with num 3 please. thanks​
Alja [10]

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

4 0
3 years ago
Other questions:
  • Solve for x.<br><br> 3x^2-6x-2=0
    14·2 answers
  • Joe has eaten 2/5 of a pizza. Jane has eaten 1/8 of a pizza how many times more pizza has joe eaten than Jane
    5·1 answer
  • Which expression is equivalent to 1/2x+(−7)−2 1/4x−(−2)?
    7·1 answer
  • What is 44,000,000 ft equal to in yards
    12·1 answer
  • What is length of BC ?
    11·1 answer
  • The National Center for Education Statistics would like to test the hypothesis that the proportion of Bachelor's degrees that we
    14·1 answer
  • PPPPPPPPPPPPPPPPPPPPPPPPPPPPplwlwlwlwlwlwlwlEEEEEEEEEEEEEEEEASE
    7·2 answers
  • Identify the vertex and directrix of each.<br> y = x2 + 2x - 4
    7·1 answer
  • Determine what fraction is the correct label for
    6·1 answer
  • Given that rectangle MNOP~ rectangle STUV~, what is the length of ___<br> TU
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!