Answer:
Area of circle R = 75π un² or ≈235.5 un²
Step-by-step explanation:
The problem says that m∠TRS = 120º. The total number of degrees in a circle is 360º. 120º is a third of 360º. Therefore, we can prove that the shaded sector is a third of the circle.
The problem then says that the area of the shaded sector is 25π and we have to calculate the area of the entire circle. Since we already know that the shaded sector is a third of the circle, we can simply multiply 25π by 3 in order to calculate the area of t he entire circle.
25π × 3 = 75π.
Area of circle R = 75π un² or ≈235.5 un²
Answer:
27
Step-by-step explanation:
22
24
25
26
27 - middle AKA median.
28
28
29
36
1. To solve this problem, it is important to know that<span> the logarithmic functions and the exponential functions are inverse. Then, you have:
</span><span>
e^a=28.37
</span><span> a=ln(28.37)
</span><span>
2. Therefore: </span><span>Which logarithmic equation is equivalent to the exponential equation e^a=28.37? A</span><span>s you can see, the answer for this question is:
</span><span>
a=ln(28.37)</span>



At

, you have

The trick to finding out the sign of this is to figure out between which multiples of

the value of

lies.
We know that

whenever

, and that

whenever

, where

.
We have

which is to say that

, an interval that is equivalent modulo

to the interval

.
So what we know is that

corresponds to the measure of an angle that lies in the third quadrant, where both cosine and sine are negative.
This means

, so

is decreasing when

.
Now, the second derivative has the value

Both

and

are negative, so we're essentially computing the sum of a negative number and a positive number. Given that

for

, and

for

, we can use a similar argument to establish in which half of the third quadrant the angle

lies. You'll find that the sine term is much larger, so that the second derivative is positive, which means

is concave up when

.