Answer:
d
Explanation:
Firstly, we need to see the theoretical mole ratio between nitrogen and ammonia from the balanced chemical equation. This is 1 to 2. One mole of nitrogen yielded two moles of ammonia.
At STP, one mole of a gas occupies a volume of 22.4, hence we need to know the volume occupied by a volume of 44.8L of ammonia. This is equal to 44.8/2 = 2 moles
Now we have seen the actual number of moles of ammonia yielded. Since this is the same as the theoretical, it means that only one mole of nitrogen was also used up.
Since it is one mole, the volume at STP is thus 22.4L
The answer you're looking for is "-18h^2 + 85h - 18".
This can be found by distributing "9h" into "(-2h + 9). This should give you "-18h^2 + 81h". Then youd distribute "-2" into the same parenthesis, which will give you "4h - 18".
Together, you would have "-18h^2 + 81h + 4h - 18". Combine like terms (81h and 4h), and you'll get the answer of "-18h^2 + 85h - 18".
I hope this helps!!
Answer:
its glitchy i'm not sure i could see it
Explanation:
The process which can be used to separate salt from the sand is leaching since salt is soluble in water thus it goes to the water leaving the sand behind. To separate salt from the water, you can allow the water to evaporate where it undergoes a phase change.
Answer:
a. LiF(s) ⇄ Li⁺(aq) + F⁻(aq)
b. [Li⁺] = [F⁻] = 6.2 x 10⁻² M
c. Ksp = [Li⁺] [F⁻]
d. Ksp = 3.8 × 10⁻³
Explanation:
The solubility (S) of lithium fluoride, LiF, is 1.6 g/L, or 6.2 x 10⁻² M.
a. The balanced solubility equilibrium equation for LiF is:
LiF(s) ⇄ Li⁺(aq) + F⁻(aq)
b. We will make an ICE chart.
LiF(s) ⇄ Li⁺(aq) + F⁻(aq)
I 0 0
C +S +S
E S S
Then, [Li⁺] = [F⁻] = S = 6.2 x 10⁻² M
c. The solubility product constant, Ksp, is the equilibrium constant for a solid substance dissolving in an aqueous solution.
Ksp = [Li⁺] [F⁻]
d.
Ksp = [Li⁺] [F⁻] = (6.2 x 10⁻²)² = 3.8 × 10⁻³