39.25 g of water (H₂O)
Explanation:
We have the following chemical reaction:
2 H₂ + O₂ → 2 H₂O
Now we calculate the number of moles of each reactant:
number of moles = mass / molar weight
number of moles of H₂ = 14.8 / 2 = 7.4 moles
number of moles of O₂ = 34.8 / 32 = 1.09 moles
We see from the chemical reaction that 2 moles of H₂ will react with 1 mole of O₂ so 7.4 moles of H₂ will react with 3.7 moles of O₂ but we only have 1.09 moles of O₂ available. The O₂ will be the limiting reactant. Knowing this we devise the following reasoning:
if 1 moles of O₂ produces 2 moles of H₂O
then 1.09 moles of O₂ produces X moles of H₂O
X = (1.09 × 2) / 1 = 2.18 moles of H₂O
mass = number of moles × molar weight
mass of H₂O = 2.18 × 18 = 39.25 g
Learn more about:
limiting reactant
brainly.com/question/7144022
brainly.com/question/6820284
#learnwithBrainly
I believe it is b. you only want to change one thing at a time so you know which one thing caused the effect
<h3>
Answer:</h3>
C₅H₁₂O(l)+15/2O₂(g)→5CO₂(g)+6H₂O(l)
<h3>
Explanation:</h3>
The balanced chemical equation for the combustion of the hydrocarbon in question is;
C₅H₁₂O(l)+15/2O₂(g)→5CO₂(g)+6H₂O(l)
- A balanced chemical equation is one in which the number of atoms of each element is equal on both sides of the equation.
- Reactant side has; 5 carbon atoms, 12 hydrogen atoms and 16 Oxygen atoms
- Product side has; 5 carbon atoms, 12 hydrogen atoms and 16 Oxygen atoms
- An equation is balanced by putting appropriate coefficients on reactants and products involved in the reaction.
- An equation is balanced so as to obey the law of conservation of mass.
24.6 ℃
<h3>Explanation</h3>
Hydrochloric acid and sodium hydroxide reacts by the following equation:
which is equivalent to
The question states that the second equation has an enthalpy, or "heat", of neutralization of . Thus the combination of every mole of hydrogen ions and hydroxide ions in solution would produce or of energy.
500 milliliter of a 0.50 mol per liter "M" solution contains 0.25 moles of the solute. There are thus 0.25 moles of hydrogen ions and hydroxide ions in the two 0.500 milliliter solutions, respectively. They would combine to release of energy.
Both the solution and the calorimeter absorb energy released in this neutralization reaction. Their temperature change is dependent on the heat capacity <em>C</em> of the two objects, combined.
The question has given the heat capacity of the calorimeter directly.
The heat capacity (the one without mass in the unit) of water is to be calculated from its mass and <em>specific</em> heat.
The calorimeter contains 1.00 liters or of the 1.0 gram per milliliter solution. Accordingly, it would have a mass of .
The solution has a specific heat of . The solution thus have a heat capacity of . Note that one degree Kelvins K is equivalent to one degree celsius ℃ in temperature change measurements.
The calorimeter-solution system thus has a heat capacity of , meaning that its temperature would rise by 1 degree celsius on the absorption of 4.634 × 10³ joules of energy. are available from the reaction. Thus, the temperature of the system shall have risen by 3.03 degrees celsius to 24.6 degrees celsius by the end of the reaction.
Answer:
Explanation:
Lewis dot structures represent the symbol of an atom we're looking at and the number of valence electrons it has. This number is represented by the sum of dots around the symbol.
- Potassium is in group 1A, this means it only has one valence electron, so we draw K with one dot in its Lewis diagram;
- Argon is in group 8A, this means it has eight valence electrons, so we draw Ar with 8 dots around it in its Lewis diagram;
- Silicon is in group 4A, this means it has four valence electrons, so we draw Si with 4 dots around it in its Lewis diagram;
- Arsenic is in group 5A, this means it has five valence electrons, so we draw As with 5 dots around it in its Lewis diagram.
Those are represented in the image attached below: