Answer:
<u>brainliest plzzzzzzzz</u>
120
Step-by-step explanation:
LCM=1320
(GDC) HCF=12
Another no.=132
let second no. be =A
According to question
First no.×Second no.=HCF×LCM
132×A=12×1320
132×A=15840
A=15840/132
A=120
Other no. is 120
Answer:
The answer is 672.
Step-by-step explanation:
To solve this problem, first let's find the surface area of the rectangular prism. To do that, multiply each dimension with each (times 2 | just in case you don't understand [what I'm talking about is down below]).
8 x 8 x 2 = 128
8 x 11 x 2 = 176
8 x 11 x 2 = 176
Then, add of the products together to find the surface area of the rectangular prism.
176 + 176 + 128 = 480
Now, let's find the surface area of the square pyramid. Now, for this particular pyramid, let's deal with the triangles first, then the square. Like we did with the rectangular prism above, multiply each dimension with each other (but dividing the product by 2 | in case you don't understand [what i'm talking about is down below]).
8 x 8 = 64.
64 ÷ 2 = 32.
SInce there are 4 triangles, multiply the quotient by 4 to find the surface area of the total number of triangles (what i'm talking about is down below).
32 x 4 = 128.
Now, let's tackle the square. All you have to do is find the area of the square.
8 x 8 = 64.
To find the surface area of the total square pyramid, add both surface areas.
128 + 64 = 192.
Finally, add both surface areas of the two 3-D shapes to find the surface area of the composite figure.
192 + 480 = 672.
Therefore, 672 is the answer.
-29664 is the correct answer. This mostly deals with the zeros and crossing them off
Answer: Surface area is the sum of the areas of all faces (or surfaces) on a 3D shape. A cuboid has 6 rectangular faces. To find the surface area of a cuboid, add the areas of all 6 faces. We can also label the length (l), width (w), and height (h) of the prism and use the formula, SA=2lw+2lh+2hw, to find the surface area.
Step-by-step explanation:
Hope this is what you were looking for