Answer : The heat required is, 1904 calories.
Explanation :
The process involved in this problem are :

The expression used will be:
![\Delta H=m\times \Delta H_{fusion}+[m\times c_{p,l}\times (T_{final}-T_{initial})]](https://tex.z-dn.net/?f=%5CDelta%20H%3Dm%5Ctimes%20%5CDelta%20H_%7Bfusion%7D%2B%5Bm%5Ctimes%20c_%7Bp%2Cl%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D)
where,
m = mass of ice = 17 g
= specific heat of liquid water = 
= enthalpy change for fusion = 
Now put all the given values in the above expression, we get:
![\Delta H=17g\times 80.0cal/g+[17g\times 1cal/g^oC\times (32.0-0)^oC]](https://tex.z-dn.net/?f=%5CDelta%20H%3D17g%5Ctimes%2080.0cal%2Fg%2B%5B17g%5Ctimes%201cal%2Fg%5EoC%5Ctimes%20%2832.0-0%29%5EoC%5D)

Therefore, the heat required is, 1904 calories.
A. It is not a solid and not a linguist
The answer is A. When the substance is at absolute zero.
Answer: Energy storage is the capture of energy produced at one time for use at a later time to reduce imbalances between energy demand and energy production. A device that stores energy is generally called an accumulator or battery.
Explanation:
Answer:
wow that's really long let me read it I will answer it when I can