Answer is: dispersion forces.
The London dispersion force is the weakest intermolecular force.
Dispersion force is also called an induced dipole-induced dipole attraction.
The London dispersion force (intermolecular force) is a temporary attractive force between molecules.
The dipole beetween iodine and bromine is weak.
You don't "turn" it into energy; petroleum HAS stored energy (chemical energy).However, you can turn it into ANOTHER TYPE OF ENERGY; usually this is done by burning the petroleum, and using it to drive machinery.
Since burning fuels is wasteful (the efficiency is limited, in theory, to the Carnot efficiency of a heat engine), other options are being explored, such as chemical reactions in a fuel cell. But such technology is not yet used on a large scale.
its exothermic. exothermic means the reaction gives out heat. [exo meaning outside and thermic meaning heat] because its a combustion reaction, fire is there meaning lots of heat.
endothermic means it takes in heat. a good example is ammonium and water (NH3 +H20)
<span>most chemical reaction are exothermic</span>
Answer:
We need 1.1 grams of Mg
Explanation:
Step 1: Data given
Volume of water = 78 mL
Initial temperature = 29 °C
Final temperature = 78 °C
The standard heats of formation
−285.8 kJ/mol H2O(l)
−924.54 kJ/mol Mg(OH)2(s)
Step 2: The equation
The heat is produced by the following reaction:
Mg(s)+2H2O(l)→Mg(OH)2(s)+H2(g)
Step 3: Calculate the mass of Mg needed
Using the standard heats of formation:
−285.8 kJ/mol H2O(l)
−924.54 kJ/mol Mg(OH)2(s)
Mg(s) + 2 H2O(l) → Mg(OH)2(s) + H2(g)
−924.54 kJ − (2 * −285.8 kJ) = −352.94 kJ/mol Mg
(4.184 J/g·°C) * (78 g) * (78 - 29)°C = 15991.248 J required
(15991.248 J) / (352940 J/mol Mg) * (24.3 g Mg/mol) = 1.1 g Mg
We need 1.1 grams of Mg
I think it’s c but I could be wrong