Answer: 3.41 s
Explanation:
Assuming the question is to find the time
the ball is in air, we can use the following equation:

Where:
is the final height of the ball
is the initial height of the ball
is the initial velocity of the ball
is the time the ball is in air
is the acceleration due to gravity

Then:


Multiplying both sides of the equation by -1 and rearranging:

At this point we have a quadratic equation of the form
, which can be solved with the following formula:
Where:
Substituting the known values:
Solving the equation and choosing the positive result we have:
This is the time the ball is in air
Answer:
0.799 m/s if air resistance is negligible.
Explanation:
For how long is the ball in the air?
Acceleration is constant. The change in the ball's height
depends on the square of the time:
,
where
is the change in the ball's height.
is the acceleration due to gravity.
is the time for which the ball is in the air.
is the initial vertical velocity of the ball.
- The height of the ball decreases, so this value should be the opposite of the height of the table relative to the ground.
. - Gravity pulls objects toward the earth, so
is also negative.
near the surface of the earth. - Assume that the table is flat. The vertical velocity of the ball will be zero until it falls off the edge. As a result,
.
Solve for
.
;
;
;
.
What's the initial horizontal velocity of the ball?
- Horizontal displacement of the ball:
; - Time taken:

Assume that air resistance is negligible. Only gravity is acting on the ball when it falls from the tabletop. The horizontal velocity of the ball will not change while the ball is in the air. In other words, the ball will move away from the table at the same speed at which it rolls towards the edge.
.
Both values from the question come with 3 significant figures. Keep more significant figures than that during the calculation and round the final result to the same number of significant figures.
Answer:
Properties of matter
Explanation:
All properties of matter are either extensive or intensive and either physical or chemical. Extensive properties, such as mass and volume, depend on the amount of matter that is being measured. Intensive properties, such as density and color, do not depend on the amount of matter.
Answer:corrosion (i believe)
Explanation: