Answer:
Explanation:
Thinking about the logics it can but it may be dim because 1.12 is lower than 2,5v so this will mean u lamp may not work or may work very dimely due to the low voltage it is receiving.
Answer:
12.14 cm
Explanation:
mass, m = 15.5 kg
frequency, f = 9.73 Hz
maximum amplitude, A = 14.6 cm
t = 1.25 s
The equation of the simple harmonic motion
y = A Sin ωt
y = A Sin (2 x π x f x t)
put, t = 1.25 s, A = 14.6 cm, f = 9.73 Hz
y = 14.6 Sin ( 2 x 3.14 x 9.73 x 1.25)
y = 14.6 Sin 76.38
y = 12.14 cm
Thus, the displacement of the particle from the equilibrium position is 12.14 cm.
Answer:
61.85 ohm
Explanation:
L = 12 m H = 12 x 10^-3 H, C = 15 x 10^-6 F, Vrms = 110 V, R = 45 ohm
Let ω0 be the resonant frequency.


ω0 = 2357 rad/s
ω = 2 x 2357 = 4714 rad/s
XL = ω L = 4714 x 12 x 10^-3 = 56.57 ohm
Xc = 1 / ω C = 1 / (4714 x 15 x 10^-6) = 14.14 ohm
Impedance, Z = 
Z = \sqrt{45^{2}+\left ( 56.57-14.14 )^{2}} = 61.85 ohm
Thus, the impedance at double the resonant frequency is 61.85 ohm.