Answer:
2.64 x 10⁻⁶T
Explanation:
The magnitude of the magnetic field produced by a long straight wire carrying current is given by Biot-Savart law as follows: "The magnetic field strength is directly proportional to the current on the wire and inversely proportional to the distance from the wire". This can be written mathematically as;
B = (μ₀ I) / (2π r) ----------------(i)
B is magnetic field
I is current through the wire
r is the distance from the wire
μ₀ is the magnetic constant = 4π x 10⁻⁷Hm⁻¹
From the question;
I = 0.7A
r = 0.053m
Substitute these values into equation (i) as follows;
B = (4π x 10⁻⁷ x 0.7) / (2π x 0.053)
B = 2.64 x 10⁻⁶T
Therefore the approximate magnitude of the magnetic field at that location is 2.64 x 10⁻⁶T
The object is at rest is the answer.
D xrxtxtxt t txt yhhgedd Ed ggdfn
No
Imagine your hold a cube (imagine the fists are just hands pushing and the face is the box) it will not move as the are evening each other out
Answer:
Speed=28.1m/s(to 3s.f.) , Time=2.19s(to 3s.f.)
Explanation:
Time=Distance/Speed
=14.5/6.63
=2.19s(to 3s.f.)
Acceleration=Final Velocity(v)-Initial Velocity(u)/Time
9.81=v-6.63/2.19
v-6.63=21.5
v=28.1m/s