complete question:
An observer at the top of a 462-ft cliff measures the angle of depression from the top of the cliff to a point on the ground to be 5°. What is the distance from the base of the cliff to the point on the ground? Round to the nearest foot
Answer:
a ≈ 5281 ft
Explanation:
The observer at the top of a 462 ft cliff measures the angle of depression from the top of the cliff to a point on the ground to be 5°.
The angle of depression form the top of the cliff = 5°
The 5° is outside the triangle formed . To find the angle in the triangle we have to subtract 5° from 90°. 90° - 5° = 85° Note sum of an angle on a right angle is 90°.
using SOHCAHTOA principle we can solve for the distance from the base of the cliff to the point on the ground(a)
tan 85° = opposite / adjacent
tan 85° = a / 462
cross multiply
462 × tan 85° = a
a = 11.4300523 × 462
a = 5280.66 ft
a ≈ 5281 ft
Answer:
Dear user,
Answer to your query is provided below
Acceleration is zero because of no change in velocity.
Explanation:
Remember that velocity is a vector quantity and a vector can change in 3 ways
•Magnitude only
•Direction only
•Both magnitude and direction.
Now the magnitude of velocity (speed) can stay constant while the direction is changing. This is the case in circular motion.
In the question above, it is mentioned that the girl is moving along a straight road. Therefore no change in direction of velocity.
B. We can see only one side of the Moon from Earth.
( we only see one side of the moon because the moon rotates around the Earth)
1 hour = 3600 seconds.
Energy dissipated = I²Rt = 8²×20×3600 = 4608000 J
Answer:
Temperature will be 305 K
Explanation:
We have given The asteroid has a surface area
Power absorbed P = 3800 watt
Boltzmann constant
According to Boltzmann rule power radiated is given by
So temperature will be 305 K