Answer:
C. His victory against a superior British foe inspired the American troops.
Explanation:
John Paul Jones is considered the hero in the Revolutionary War. He is known as the Father of the US Navy.
In the Revolutionary War, Jones sided with the American colonists against the British and took hold of naval ships. In 1779, when the British warship <em>Serapis</em> was in conflict with the American warship <em>Bon Homme Richard, </em>Jones plugged the American warship with the Britisher's warship and tossed a grenade into the opponent warship. Thus when Jones was victorious in the war, this boosted the American spirits for the war.
Therefore, option C is the correct answer.
Answer:
due to production of heat through friction
Answer:
Resonance structures have <u> </u><u>same</u><u> </u> connectivity of atoms and <u> differ only in</u> distribution of electrons.
Explanation:
Atoms supply the electrons from their outer electron shells. Electrons are found free in nature and are grouped around the nucleus into shells. Electrons can be further explained as negatively charged subatomic particle. Electrons have properties of both particles and waves and they can be moved around.
Resonance structures are imaginary structures and not all of them are created equally. Resonance structures have two or more possible electron structures, and, the resonance structures for a particular substance sometimes have different energy and stability. When resonance structures are identical, they are important descriptions of the molecule. The position of the atoms is the same in the various resonance structures of a compound, but the electrons are distributed differently around the structure.
light, water, carbon dioxide
Explanation:
c02 , h20 and light
Answer:
ΔL = 0.66 m
Explanation:
The change in length on an object due to rise in temperature is given by the following equation of linear thermal expansion:
ΔL = αLΔT
where,
ΔL = Change in Length of the bridge = ?
α = Coefficient of linear thermal expansion = 11 x 10⁻⁶ °C⁻¹
L = Original Length of the Bridge = 1000 m
ΔT = Change in Temperature = Final Temperature - Initial Temperature
ΔT = 40°C - (-20°C) = 60°C
Therefore,
ΔL = (11 x 10⁻⁶ °C⁻¹)(1000 m)(60°C)
<u>ΔL = 0.66 m</u>