The answer is D
FeCl3 + 3 NH4OH → Fe(OH)3 + 3 NH4Cl
Given:
Iron, 125 grams
T
1 = 23.5 degrees Celsius, T2 =
78 degrees Celsius.
Required:
Heat produced in kilojoules
Solution:
The molar mass of iron is 55.8
grams per mole. SO we need to change the given mass of iron into moles.
Number of moles of iron = 125 g/(55.8
g/mol) = 2.24 moles
<span>
Q (heat) = nRT = nR(T2 = T1)</span>
Q (heat) = 2.24 moles (8.314
Joules per mol degrees Celsius) (78.0 degrees Celsius – 23.5 degrees Celsius)
<u>Q (heat) = 1014.97 Joules or
1.015 kilojoules</u>
<span>This is the amount of heat
produced in warming 125 g f iron.</span>
Answer:
4.52×10^24
Explanation:
N = n × Na
where; N = no. of bananas
n = no. of moles
Na = Avogadro's constant
Which is 6.02×10^23
N = 7.5 × 6.02×10^23
N =4.515×10^24
Answer:
C
Explanation:
Alleles being more minute than genes,can pass on trait similar or different
<span>2.51 grams
You want to prepare 19.16 g of some solution which will have 13.1% of it's mass being sucrose. So we just need to perform some simple multiplication:
19.16g * 0.131 = 2.50996g
Rounding to 3 significant figures gives 2.51 g.</span>