Freezing point, boiling point, melting point, smell, attraction or repulsion to magnets, colour change, and many more examples.
Answer:
Neon (Ne)
Hydrogen (H)
Argon (Ar)
Iron (Fe)
Calcium (Ca)
Deuterium, an isotope of hydrogen that has one proton and one neutron.
Plutonium (Pu)
F-, a fluorine anion.
Explanation:
I got u
Answer:
Explanation:
<u>1) Chemical equation (given)</u>
<u>2) Theoretical yield</u>
<u>a) Convert mass of NaHCO₃ to moles:</u>
- n = mass in grams / molar mass
- molar mass = 84.007 g/mol
- n = 2.36 g / 84.007 g/mol = 0.02809 mol
<u>b) Mole ratio:</u>
- 2 mol NaHCO₃ : 1 mol H₂CO₃
<u>c) Proportionality:</u>
- 2 mol NaHCO₃ / mol H₂CO₃ = 0.02809 mol NaHCO₃ / x
⇒ x = 0.2809 / 2 mol H₂CO₃ = 0.01405 mol H₂CO₃
<u>3) Actual yield</u>
<u>a) Mass balance</u>: 2.36 g - 1.57 g = 0.79 g
<u>b) Convert 0.79 g of carbonic acid to number of moles</u>:
- n = mass in grams / molar mass
- n = 0.79 g / 62.03 g/mol = 0.01274 mol
<u>4) Percentage yield, y (%)</u>
- y (%) = actual yield / theoretical yield × 100
- y (%) = 0.1274 mol / 0.1405 mol × 100 = 90.68%
The answer must show 3 significant figures, so y(%) = 90.7%.
Small peak at 3000large peak at 1685F: it contains two benzene rings that is connected by a bunch of carbons and ketone-Explanation: The spectrum shows a stretching absorption consistent with a ketone functional group: carbonyl C=O stretching at ~1685 cm-1. (An aldehyde, by contrast, would also show a ~2700 cm-1 absorption for the carbonyl C-H stretch.) The C=O stretching frequency is consistent with an aromatic ketone, such as in compound F (1,4-diphenyl-1,4-butanedione). In contrast, an aliphatic ketone absorbs at higher energy (~1710 cm-1). The spectrum also shows the typical ~1600 & ~1500 cm-1 absorptions of a phenyl group.