9514 1404 393
Answer:
382 square units
Step-by-step explanation:
The central four rectangles down the middle of the net are 9 units wide, and alternate between 8 and 7 units high. Then the area of those four rectangles is ...
9(8+7+8+7) = 270 . . . square units
The rectangles making up the two left and right "wings" of the net are 8 units high and 7 units wide, so have a total area of ...
2×(8)(7) = 112 . . . square units
Then the area of the figure computed from the net is ...
270 +112 = 382 . . . square units
__
<em>Additional comment</em>
You can reject the first two answer choices immediately, because they are odd. Each face will have an area that is the product of integers, so will be an integer. There are two faces of each size, so <em>the total area of this figure must be an even number</em>.
You may recognize that the dimensions are 8, 8+1, 8-1. Then the area is roughly that of a cube with dimensions of 8: 6×8² = 384. If you use these values (8, 8+1, 8-1) in the area formula, you find the area is actually 384-2 = 382. That area formula is A = 2(LW +H(L+W)).
It seems like you have the answer already. but heres how its calculated.
so the missing number is 20 **cross multiply 100 and 3 to get 300 then divide 15 into 300 to get 20**
so the missing number is 50
**cross multiply 100 and 80 to get 8000 then divide 160<span> into 8000 to get 50**</span>
The first part says the sum of the squares of two consecutive integers or in other words (x)(x)+(x+1)(x+1) so we can cross out A because 2 and 3 are prime numbers (no factors) we can cross out all the others because the square root of 52 is not an integer so any equation with 52 in it does not satisfy the requirement. so none of them are corect. additionally, some of the equations are obviously false such as 52+62=61
Answer:
x = 5, x = 1
Step-by-step explanation:
The quadratic equation 0 = 4(x - 3)2 - 16.
Using binomial theorem, (a - b)2 = a2 - 2ab + b2 to expand (x - 3)2.
0 = 4(x2 - 6x + 9 ) - 16.
Using distributive property to multiply 4 by x2 - 6x + 9.
0 = 4x2 - 24x + 36 - 16.
Subtract 16 from 36 to get 20.
0 = 4x2 - 24x + 20.
4x2 - 24x + 20 = 0.
Divide both sides by 4.
x2 - 6x + 5 = 0.
To solve the equation, factor and rewrite as x2 + ax + bx + 5
a + b = -6, ab = 1(5) = 5.
a = -5, b = -1.
Rewriting x2 - 6x + 5 as
(x2 - 5x) + (-x + 5)
Factor x in the first and -1 in the second group.
x(x - 5) - (x - 5)
Factor out common term
(x - 5)(x - 1)
By solving the above, we get
x = 5, x = 1
<u>11 chairs at each table.</u> (157/14 = 11.214...)
<u>There will be 3 chairs left over.</u> (14x11 = 154 157-154 = 3)