The correct answer is: wavelength =
4562 nm
Explanation:Rydberg's formula is given as:
![\frac{1}{\lambda} = R[ \frac{1}{n_1^2} - \frac{1}{n_2^2} ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5Clambda%7D%20%3D%20R%5B%20%5Cfrac%7B1%7D%7Bn_1%5E2%7D%20%20-%20%5Cfrac%7B1%7D%7Bn_2%5E2%7D%20%5D%20)
--- (1)
Where
R = Rydberg's constant = 1.096 * 10^7 per meter

= 5

= 7
λ = Wavelength
Plug in the values in (1):
(1)=>
![\frac{1}{\lambda} = (1.096 * 10^7)[ \frac{1}{5^2} - \frac{1}{7^2} ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%7D%20%3D%20%281.096%20%2A%2010%5E7%29%5B%20%5Cfrac%7B1%7D%7B5%5E2%7D%20-%20%5Cfrac%7B1%7D%7B7%5E2%7D%20%5D)
The charges align themselves so that the conductor's internal field is zero.
<h3>What occurs if a charged surface is in close proximity to a conducting surface?</h3>
Induced charges are created on the conductor when a charge is brought close to it. The internal free charges of the conductor, however, are gathered throughout its surface because the electric field inside the conductor must be zero in order to defeat the electric field of induced charges.
<h3>What takes place within a conductor?</h3>
A substance that has a lot of free electrons accessible for the flow of current is said to be a conductor. Since there are numerous electrons, a powerful force of repulsion exists between them as well. As a result, the electrons move to lessen their attraction for one another.
To know more about conductor's visit:-
brainly.com/question/18084972
#SPJ4
For a storm to be a blizzard, the wind must be at least 35 miles per hour. This is just one criteria for considering a storm to be a blizzard. The wind speed of 35 miles per hour should reduce the visibility to less than 400 meters. The last criteria is that the storm must continue for a time frame of at least 3 hours.