To solve this question, we use the wave equation which is:
C=f*λ
where:
C is the speed;
f is the frequency;
λ is the wavelength
So in this case, plugging in our values in the problem. This will give us:
C = 261.6Hz × 1.31m
= 342.696 m/s is the answer.
Answer:
Explanation:
According to Newton's 2nd Law of motion the force is proportional to the mass and acceleration :
(1)
On the other hand, the equation for the Centripetal force is:
(2)
Where:
is the velocity
is the radius of the circular motion
Making (1) and (2) equal:
(3)
Hence:
This is the expression for the centripetal acceleration
It should be noted, this acceleration is directed toward the center of the circumference of the circular motion (that's why it's called centripetal acceleration).
Answer:
D, using a spring scale to exert a force on the block. Measure the acceleration of the block and the applied force
Explanation:
For this you would use the net force equation acceleration=net force * mass however you will want to isolate mass so it would be acceleration/ net force to get mass. Then process of elimination comes to play.
Explanation:
s = ut + 1/2 a t^2
200 = 0 * 6 + 1/2 * a * (6)^2
200 = 1/2 * a * 36
200 = 18 a
a = 200/18
a= 11.1m/sec^2
v = u + at
v = 0 + 11.1 * 6
v = 66.6m/s
hope it helps you
This is another one of those muddy misleading questions, followed by
a muddy group of choices from which an answer must be selected.
a). is absurd. There's no such thing as a "balanced force", only
a balanced group of forces.
b). is probably the choice the question is aiming for.
c). is not so. The engines of an airplane do plenty of work lifting the plane
off the ground, although the force of the engines is never directed upward.
d). is really awkward. The object's motion is almost never the cause of the force.
The force is almost always the cause of the object's motion.
Now for the big 800-lb gorilla in the room: No moving object needs to be involved
in order for energy to be flowing or work to be getting done.
-- A radio wave radiates through space. Straighten out a wire coat-hanger and
stick it up in the air where the radio wave can pass by it. Electrical current flows
through the wire, and you can drain the electrical energy out the bottom of it.
-- A light bulb is shining. Some distance away, something it's shining on
gets warm, because of the heat energy that has shot across to it from the
light bulb and soaked into it.
-- A lightning bolt jumps from the ground to a passing cloud. Or, if you feel
more comfortable with it, a lightning bolt jumps from a cloud to the ground.
It doesn't matter. Either way, there's enough energy splashing around to
ignite houses, zap TVs and computers, melt concrete, vaporize water, and
light up a city. Although nothing is moving.