A) Ca(OH)2 + CO2 —> CaCO3 + H2O
B) when Ca(OH)2 is reacted with CO2, the CaCO3 produced is a precipitate which turns the solution milky
Answer and explanation :
DIFFERENCE BETWEEN HOMOGENEOUS AND HETEROGENEOUS MIXTURE :
- In homogeneous mixture the component which are present in the mixture all are in the same proportion whereas in heterogeneous mixture the component which are present in the mixture don't have the same proportion
- We can not pick out the component of homogeneous mixture but in heterogeneous mixture we can pick out the components from the mixture
- Example of homogeneous mixture is water, oil ,water sugar solution, milk blood etc. And example of heterogeneous mixture is solution of sand and water ,concrete etc.
Answer:
The lock-and-key model:
c. Enzyme active site has a rigid structure complementary
The induced-fit model:
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
Common to both The lock-and-key model and The induced-fit model:
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
d. Substrate binds to the enzyme through non-covalent interactions
Explanation:
Generally, the catalytic power of enzymes are due to transient covalent bonds formed between an enzyme's catalytic functional group and a substrate as well as non-covalent interactions between substrate and enzyme which lowers the activation energy of the reaction. This applies to both the lock-and-key model as well as induced-fit mode of enzyme catalysis.
The lock and key model of enzyme catalysis and specificity proposes that enzymes are structurally complementary to their substrates such that they fit like a lock and key. This complementary nature of the enzyme and its substrates ensures that only a substrate that is complementary to the enzyme's active site can bind to it for catalysis to proceed. this is known as the specificity of an enzyme to a particular substrate.
The induced-fit mode proposes that binding of substrate to the active site of an enzyme induces conformational changes in the enzyme which better positions various functional groups on the enzyme into the proper position to catalyse the reaction.
The correct answer among the choices is option C. The ion that is part of all nucleic acids is phosphoric acid. Nucleic acids are large biomolecules that is important for all life forms. DNA and RNA are nucleic acids. These biomolecules are made from monomers called nucleotides. Each monomer is composed of 5 carbon sugar, a nitrogeneous base and a phosphate group.
In an ionic bond, one atom essentially donate an electron to stabilize the other atom. A molecule bond is made when two or more atoms form a chemical bond, linking them together. The two types of bonds are ionic bonds and covalent bonds.