The plants that were allowed to self pollinate were the F1 plants.
The plants that are true breeding are P generation plants.
The plants where there were 3times as many tall plants as short plants are in F2 generation.
<h3><u>Explanation:</u></h3>
This question is based on the Mendel’s Experiment. Sir Gregor Johann Mendel was the father of genetics who experimented on garden pea plants <em>Pisum</em> <em>sativum</em> to see whether the characters got mixed or not and to know the real cause behind different traits of same character in plants.
He took the pure homozygous tall and short plants separately which he called as parental generation or P generation. These plants were homozygous, hence pure breeding.
As these plants were crossed between themselves, then the F1 generation showed all tall plants. This is because of the heterozygous plants which showed character of dominant trait. These plants were allowed to self pollinate.
As a result of self pollination of the F1 plants, the F2 plants were 75% tall in number whereas the other 25% short, which gave the phenotypic ratio of 3:1.
Answer:Polymerization, any process in which relatively small molecules, called monomers, combine chemically to produce a very large chainlike or network molecule, called a polymer. The monomer molecules may be all alike, or they may represent two, three, or more different compounds.
Explanation:
They bond together creating compounds
The organism can produce 12 genetically different gametes.
<h3><u>Explanation:</u></h3>
The gametes are the unit of sexual reproduction which are produced by an organism from their germ mother cell by means of meiosis. This gametes do carry half the amount of total chromosomes that is present inside each cell of that organism. This process let's the genetic combinations of chromosomes to get more variations among offsprings. But this isn't the only source of variation among the offsprings.
Each and every germ mother cell that's undergoing the meiotic division undergoes a process called crossing over and chaismata formation which gives the genetic mixing among the different alleles of same character among the organism.
Thus, statistically, if the organism has n pairs of chromosomes, then the organism will be able to produce 2n number of genetically different gametes which helps in finding out the probability of genotype of the offsprings.
So if the organism has 6 pairs of chromosomes, then the organism will be able to produce 12 genetically different gametes.
Answer: So, nitrogen is often the limiting factor for growth and biomass production in all environments where there is suitable climate and availability of water to support life.
Explanation: