Answer:
ΔU = 5.21 × 10^(10) J
Explanation:
We are given;
Mass of object; m = 1040 kg
To solve this, we will use the formula for potential energy which is;
U = -GMm/r
But we are told we want to move the object from the Earth's surface to an altitude four times the Earth's radius.
Thus;
ΔU = -GMm((1/r_f) - (1/r_i))
Where;
M is mass of earth = 5.98 × 10^(24) kg
r_f is final radius
r_i is initial radius
G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²
Since, it's moving to altitude four times the Earth's radius, it means that;
r_i = R_e
r_f = R_e + 4R_e = 5R_e
Where R_e is radius of earth = 6371 × 10³ m
Thus;
ΔU = -6.67 × 10^(-11) × 5.98 × 10^(24)
× 1040((1/(5 × 6371 × 10³)) - (1/(6371 × 10³))
ΔU = 5.21 × 10^(10) J
Answer:
Heat is a source of energy
Explanation:
Just took the test
Answer:I have to say 56
Explanation: because it is going up by 8
The letter D represents the wavelength
The radius of the circle, in cm, after t seconds would be 50t
The area, A, of the circle after t seconds is expressed in the equation: A = pi * r^2
A = pi * (50T)^2 = pi*2500*t^2
The change of area per unit time is obtained by differentiating the equation
A' = pi*2500*2*t A' = pi*5000*t
when t = 3 secondsA' = pi*5000*3 = 47122 cm2/s