Yeah!! It is better to decrease the speed of the vehicle so the ejection of gases would happen in slow manner.... then you can save your gasoline
Answer:

Explanation:
the relation between current, voltage and resistance in an electrical circuit is given by Ohm's law:

where V is the voltage, I is the current and R is the resistance. In this problem, the current is I=2 A, the voltage is V=120 V, therefore we can arrange the previous equation and find the resistance:

The answer is C in this question.
Answer:
T_ww = 43,23°C
Explanation:
To solve this question, we use energy balance and we state that the energy that enters the systems equals the energy that leaves the system plus losses. Mathematically, we will have that:
E_in=E_out+E_loss
The energy associated to a current of fluid can be defined as:
E=m*C_p*T_f
So, applying the energy balance to the system described:
m_CW*C_p*T_CW+m_HW*C_p*T_HW=m_WW*C_p*T_WW+E_loss
Replacing the values given on the statement, we have:
1.0 kg/s*4,18 kJ/(kg°C)*25°C+0.8 kg/s*4,18 kJ/(kg°C)*75°C=1.8 kg/s*4,18 kJ/(kg°C)*T_WW+30 kJ/s
Solving for the temperature Tww, we have:
(1.0 kg/s*4,18 kJ/(kg°C)*25°C+0.8 kg/s*4,18 kJ/(kg°C)*75°C-30 kJ/s)/(1.8 kg/s*4,18 kJ/(kg°C))=T_WW
T_WW=43,23 °C
Have a nice day! :D
Answer:

Explanation:
We must use conservation of linear momentum before and after the collision, 
Before the collision we have:

where these are the masses are initial velocities of both players.
After the collision we have:

since they clong together, acting as one body.
This means we have:

Or:

Which for our values is:
