Answer:
t≈8.0927
Step-by-step explanation:
h(t) = -16t^2 + 128t +12
We want to find when h(t) is zero ( or when it hits the ground)
0 = -16t^2 + 128t +12
Completing the square
Subtract 12 from each side
-12 = -16t^2 + 128t
Divide each side by -16
-12/-16 = -16/-16t^2 + 128/-16t
3/4 = t^2 -8t
Take the coefficient of t and divide it by 8
-8/2 = -4
Then square it
(-4) ^2 = 16
Add 16 to each side
16+3/4 = t^2 -8t+16
64/4 + 3/4= (t-4)^2
67/4 = (t-4)^2
Take the square root of each side
±sqrt(67/4) =sqrt( (t-4)^2)
±1/2sqrt(67) = (t-4)
Add 4 to each side
4 ±1/2sqrt(67) = t
The approximate values for t are
t≈-0.092676
t≈8.0927
The first is before the rocket is launched so the only valid answer is the second one
Answer:
The answer is google
Step-by-step explanation:
G:d
O:r
O:u
G:g
L:s
E:
<span>December = $57
</span><span>In December, the price was $57, which was $29 less than the price in November then November price was: $57 + $29 = $86
</span><span>In November, the price of a GizmoPhone was double the price in March. so March: $86 x 2 = $172
answer: the price </span>of a GizmoPhone in March was $172
I think the answer is B x=5