Answer:
Explained below
Explanation:
To explain this, let's consider a tennis ball being launched from the top of a very high building.
Now, if the tennis ball is launched horizontally without any upward angle but with an initial velocity of 10 m/s. In this motion, If there is no gravity, the tennis ball would continue in motion at that same speed of 10 m/s in the horizontal direction. However, in reality, gravity causes the tennis ball to accelerate downwards at a rate of 9.8 m/s for every second. This implies that the vertical velocity component is changing at the rate of 9.8 m/s every second.
Thus, after 1 second, horizontal velocity component will remain 10 m/s and vertical component will be 9.8 m/s × 1 = 9.8 m/s downwards.
Also, after 2 seconds, the vertical velocity component will remain 10 m/s, however the vertical component will now be 9.8 × 2 = 19.6 m/s downwards.
Same procedure is repeated as t increases by 1 second.
Answer: C
Explanation:
In collision, whether elastic or inelastic collisions, momentum is always conserved. That is, the momentum before collision will be equal to the momentum after collision.
Change in momentum of the system will be momentum after collision minus total momentum before collision.
Since momentum is a vector quantity, the direction will also be considered.
Momentum = MV - mU
Let
M = 800 kg is going north
at V = 20 m/s and the other car
m= 800 kg is going south
at U = 10m/s.
Substitute all the parameters into the formula
Momentum = (800 × 20) - (800 × 10)
= 8000 kgm/s
The final momentum after collision will also be equal to 8000 kgm/s
Change in momentum = 8000 - 8000
Change in momentum = 0
Answer:
a = (V2 - V1) / t = (0 - 14.6) / 3 = -4.87 m/s^2
It might be useful to convert 14.6 m/s to mph
14.6 m/s * 39.37 in/m = 575 in /s
575 in/s / 12 in/ft = 47.9 ft/sec
47.9 ft/s / 88 ft/sec * 60 mph = 32.6 mph