Answer:
See below
Explanation:
Photosynthesis is the process in which green plants use sunlight to make their own food. Photosynthesis requires sunlight, chlorophyll, water, and carbon dioxide gas. It is the process in which the chlorophyll in the leaves of the plant use the sunlight and water to convert the carbon dioxide gas into energy for the plant to use.
Answer:
Immunization, or immunisation, is the process by which an individual's immune system becomes fortified against an infectious agent.
Explanation:
<em>HOPE</em><em> </em><em>IT</em><em> </em><em>HELPS</em><em> </em>
<em>HAVE</em><em> </em><em>A</em><em> </em><em>NICE</em><em> </em><em>DAY</em><em> </em><em>:)</em><em> </em>
<em>XXITZFLIRTYQUEENXX</em><em> </em>
Answer:
(a) The energy of the photon is 1.632 x
J.
(b) The wavelength of the photon is 1.2 x
m.
(c) The frequency of the photon is 2.47 x
Hz.
Explanation:
Let;
= -13.60 ev
= -3.40 ev
(a) Energy of the emitted photon can be determined as;
-
= -3.40 - (-13.60)
= -3.40 + 13.60
= 10.20 eV
= 10.20(1.6 x
)
-
= 1.632 x
Joules
The energy of the emitted photon is 10.20 eV (or 1.632 x
Joules).
(b) The wavelength, λ, can be determined as;
E = (hc)/ λ
where: E is the energy of the photon, h is the Planck's constant (6.6 x
Js), c is the speed of light (3 x
m/s) and λ is the wavelength.
10.20(1.6 x
) = (6.6 x
* 3 x
)/ λ
λ = 
= 1.213 x 
Wavelength of the photon is 1.2 x
m.
(c) The frequency can be determined by;
E = hf
where f is the frequency of the photon.
1.632 x
= 6.6 x
x f
f = 
= 2.47 x
Hz
Frequency of the emitted photon is 2.47 x
Hz.
In a surface wave (like water) the water goes up and down, but the wave travels across (parallel to) the surface.