Answer:
D
Step-by-step explanation:
X is 66 degrees, you just subtract 24 to 90 and it gives you 66.
Answer:
C
Step-by-step explanation:
To make it easy let's start by organizing our information :
- AC=12 AND BD=8
- ABCD is a rhombus
- K and L are the midpoints of sides AD and CD
- we notice that the rhombus ABCD is divided into four right triangles
What do you think of when you hear a right triangle ?
- The pythagorian theorem !
AC and BD are khown so let's focus on them .
If we concentrated we can notice that AB and BD are cossing each other in the midpoints . why ?
Simply because they are the diagonals of a rhombus .
ow let's apply the pythagorian theorem :
- (AC/2)² + (BD/2)² = BC²
- 6²+4²=52
- BC²= 52⇒
=BC
Now we khow that : AB=BC=CD=AD=
This isn't enough . Let's try to figure out a way to calculate the length of KL wich is the base of the triangle
- KL is parallel to AC
- k is the midpoint of AD and L of DC
I smell something . yes! Thales theorem
- KL/AC=DL/DC=DK/AD WE4LL TAKE OLY ONE
- KL/12=
/2*
- KL/12=1/2⇒ KL=6
Now we have the length of the base kl
Now the big boss the height :
- notice that you khow the length of KL
- BD crosses kl from its midpoint and DL =
/2
What I want to do is to apply the pythgorian thaorem to khow the lenght of that small part that is not a part of the height of the triangle . I will call it D
- DL²=(KL/2)²+D²
- 52/4= 9+ D²
- D² = 52/4-9 +4 SO D=2
now the height of the trigle is H= BD-D= 8-2=6
NOw the area of the triangle is :
- A=(KL*H)/2 ⇒ A= (6*6)/2=18
THE ANSWER IS 18 SQ.UN
There are many systems of equation that will satisfy the requirement for Part A.
an example is y≤(1/4)x-3 and y≥(-1/2)x-6
y≥(-1/2)x-6 goes through the point (0,-6) and (-2, -5), the shaded area is above the line. all the points fall in the shaded area, but
y≤(1/4)x-3 goes through the points (0,-3) and (4,-2), the shaded area is below the line, only A and E are in the shaded area.
only A and E satisfy both inequality, in the overlapping shaded area.
Part B. to verify, put the coordinates of A (-3,-4) and E(5,-4) in both inequalities to see if they will make the inequalities true.
for y≤(1/4)x-3: -4≤(1/4)(-3)-3
-4≤-3&3/4 This is valid.
For y≥(-1/2)x-6: -4≥(-1/2)(-3)-6
-4≥-4&1/3 this is valid as well. So Yes, A satisfies both inequalities.
Do the same for point E (5,-4)
Part C: the line y<-2x+4 is a dotted line going through (0,4) and (-2,0)
the shaded area is below the line
farms A, B, and D are in this shaded area.