1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vfiekz [6]
3 years ago
10

Which fraction is in simplest form? ​2-10​ ​5-12​ ​3-6​ ​4-8

Mathematics
2 answers:
IgorLugansk [536]3 years ago
8 0

Answer:

5/12

Step-by-step explanation:

All of the other answers share at least one factor they can be divided by (the numerator in all cases). 5/12 however shares no factors and cannot be simplified anymore.

Alik [6]3 years ago
8 0
5/12 is in simplest form because you can not divide 5 into a half.
You might be interested in
Ali used the expressed 8+25×2-45 to find how many CDs he has. how many CDs dose he have
MatroZZZ [7]

Ali has 13 CD's

Here's how I got my answer:

Step 1: Simplify 25 * 2 to 50. Which leaves us with 8 + 50 - 45

Step 2: Simplify 50 - 45 to 5. Which leaves us with 8 + 5.

Step 3: Simplify 8 + 5, to get your answer, 13.

7 0
3 years ago
Read 2 more answers
Does anyone know the answer?
laila [671]

Answer:

a. θ = 30°

b. μ = √3 / 15 ≈ 0.115

Step-by-step explanation:

Draw a free body diagram for each scenario (see attached figure).  The body has four forces acting on it:

  • Weight pulling down
  • Normal force perpendicular to the incline
  • Applied force parallel up the incline
  • Friction force parallel to the incline

Remember that friction opposes the direction of motion.  So when the body is sliding up, friction points down the incline.  And when the body is sliding down, friction points up the incline.

Now apply Newton's second law to each scenario, first in the normal direction, then in the parallel direction.

For sliding up, sum of the forces normal to the incline:

∑F = ma

N − mg cos θ = 0

N = mg cos θ

Sum of the forces parallel to the incline:

∑F = ma

P₁ − f − mg sin θ = 0

P₁ − Nμ − mg sin θ = 0

Substituting the expression for normal force:

P₁ − mgμ cos θ − mg sin θ = 0

Now for sliding down, sum of the forces normal to the incline:

∑F = ma

N − mg cos θ = 0

N = mg cos θ

And sum of the forces parallel to the incline:

∑F = ma

P₂ + f − mg sin θ = 0

P₂ + Nμ − mg sin θ = 0

Substituting the expression for normal force:

P₂ + mgμ cos θ − mg sin θ = 0

We know that P₁ = 6 kg.wt, P₂ = 4 kg.wt, and mg = 10 kg.wt.

So we have two equations and two unknowns (μ and θ):

P₁ − mgμ cos θ − mg sin θ = 0

P₂ + mgμ cos θ − mg sin θ = 0

Let's start by adding the equations together:

P₁ + P₂ − 2 mg sin θ = 0

P₁ + P₂ = 2 mg sin θ

sin θ = (P₁ + P₂) / (2 mg)

Plugging in the values:

sin θ = (6 + 4) / (2 × 10)

sin θ = 1/2

θ = 30°

Now we can plug this into either equation and find μ.

P₁ − mgμ cos θ − mg sin θ = 0

6 − (10 cos 30°) μ − 10 sin 30° = 0

6 − 5√3 μ − 5 = 0

1 = 5√3 μ

μ = √3 / 15

μ ≈ 0.115

6 0
3 years ago
78.75 is what percent of 225?
viva [34]

Answer:

35%

Step-by-step explanation:

1. Multiply 78.75 by 100

78.75* 100 = 7875

2. Divide this by 225

7875/225 = 35

3. Make this number a precent 35%

5 0
3 years ago
Solve for x.<br> 3(x + 2) + 4(x - 5) = 10
____ [38]

Step-by-step explanation:

3x+6+4x-20=10

7x-14=10

7x=24

x=24/7

6 0
3 years ago
Read 2 more answers
What is the derivative of 1/square root 4x.
Bumek [7]

Answer:

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

Exponential Properties

  • Exponential Property [Rewrite]:                                                                   \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Property [Root Rewrite]:                                                           \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)  

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg]

<u>Step 2: Differentiate</u>

  1. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \bigg( \frac{1}{2\sqrt{x}} \bigg)'
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{\sqrt{x}} \bigg)'
  3. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{x^\Big{\frac{1}{2}}} \bigg)'
  4. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( x^\bigg{\frac{-1}{2}} \bigg)'
  5. Derivative Rule [Basic Power Rule]:                                                             \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{-1}{2} x^\bigg{\frac{-3}{2}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4} x^\bigg{\frac{-3}{2}}
  7. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

5 0
2 years ago
Other questions:
  • Mr Klinker is 35 and his daughter is 10. In how many years will Mr.Klinker be twice as old as his daughter? Right an algebriac e
    13·1 answer
  • If y varies directly as x and inversely as z, and y = 32 whe x = 4 and z = 6, find y when x = 10 and z = 26
    7·1 answer
  • (Pts: 1) Please help me! Question is in attachment!
    7·2 answers
  • Whats the answer for -3(r-4)&gt;0
    15·1 answer
  • IM GIVING BRAINIEST TO THE FIRST CORRECT ANSWER !!! HURRY.
    13·1 answer
  • For the following equations, draw a picture of the tiles on an Equation Mat. Then use “legal” moves to simplify and solve for th
    9·1 answer
  • PLEASE HELPPP! I'LL GIVE BRAINLEST​
    7·1 answer
  • Please help in this!
    8·2 answers
  • Show how to solve it step by step <br><br> tan(x)cot(x)=1
    9·1 answer
  • Please help am stuck​ ASAP
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!